Your browser doesn't support javascript.
ROS-Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy.
Adv Mater ; 31(37): e1903277, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31348581
Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at-site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I-NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I-NM@siRNA nanomedicine demonstrates effective at-site siRNA release resulting from tumoral reactive oxygen species (ROS)-triggered sequential destabilization. Furthermore, the utility of 3I-NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I-NM@siRNA nanomedicine with angiopep-2 peptide is enhanced. The targeted Ang-3I-NM@siRNA exhibits superb blood-brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo-like kinase 1 and vascular endothelial growth factor receptor-2, Ang-3I-NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple-interaction stabilization together with inbuilt self-destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Assunto principal: Terapia Genética / Espécies Reativas de Oxigênio / Glioblastoma / RNA Interferente Pequeno / Interferência de RNA / Nanomedicina Limite: Animais / Humanos Idioma: Inglês Revista: Adv Mater Assunto da revista: Biofísica / Química Ano de publicação: 2019 Tipo de documento: Artigo País de afiliação: China