Your browser doesn't support javascript.
Molecular Beam Epitaxy and Electronic Structure of Atomically Thin Oxyselenide Films.
Adv Mater ; 31(39): e1901964, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389096
ABSTRACT
Atomically thin oxychalcogenides have been attracting intensive attention for their fascinating fundamental properties and application prospects. Bi2 O2 Se, a representative of layered oxychalcogenides, has emerged as an air-stable high-mobility 2D semiconductor that holds great promise for next-generation electronics. The preparation and device fabrication of high-quality Bi2 O2 Se crystals down to a few atomic layers remains a great challenge at present. Here, molecular beam epitaxy (MBE) of atomically thin Bi2 O2 Se films down to monolayer on SrTiO3 (001) substrate is achieved by co-evaporating Bi and Se precursors in oxygen atmosphere. The interfacial atomic arrangements of MBE-grown Bi2 O2 Se/SrTiO3 are unambiguously revealed, showing an atomically sharp interface and atom-to-atom alignment. Importantly, the electronic band structures of one-unit-cell (1-UC) thick Bi2 O2 Se films are observed by angle-resolved photoemission spectroscopy (ARPES), showing low effective mass of ≈0.15 m0 and bandgap of ≈0.8 eV. These results may be constructive to the synthesis of other 2D oxychalcogenides and investigation of novel physical properties.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Adv Mater Assunto da revista: Biofísica / Química Ano de publicação: 2019 Tipo de documento: Artigo