Your browser doesn't support javascript.
loading
Leaf longevity in temperate evergreen species is related to phylogeny and leaf size.
Smith, Linnea; Primack, Richard B; Zipf, Lucy; Pardo, Sarah; Gallinat, Amanda S; Panchen, Zoe A.
Afiliação
  • Smith L; Boston University, Boston, USA.
  • Primack RB; Boston University, Boston, USA. primack@bu.edu.
  • Zipf L; Boston University, Boston, USA.
  • Pardo S; Boston University, Boston, USA.
  • Gallinat AS; Boston University, Boston, USA.
  • Panchen ZA; Utah State University, Logan, USA.
Oecologia ; 191(3): 483-491, 2019 Nov.
Article em En | MEDLINE | ID: mdl-31456021
ABSTRACT
Leaf longevity (LL), the amount of time a photosynthetically active leaf remains on a plant, is an important trait of evergreen species, affecting physiological ecology and ecosystem processes. A long LL gives leaves more time to fix carbon but carries higher construction costs, while a short LL allows plants to respond more rapidly to changing environmental conditions. For many evergreen taxa, LL data are not readily available, and it is not known if LL is phylogenetically conserved. To address this gap, we measured LL for 169 temperate and boreal evergreen woody species at the Arnold Arboretum, a botanical garden in Boston, Massachusetts, along with metrics of leaf size and number known to be related to LL. We hypothesized that LL is phylogenetically conserved, and that longer LL is associated with a greater numbers of leaves, smaller leaves, and a colder hardiness zone of the species' native range. We found that average LL ranged from 1.4 years in Rhododendron tomentosum to 10.5 years in Abies cilicia. LL was phylogenetically conserved, with some genera, such as Abies and Picea, exhibiting long LL (> 3 years) and others, such as Ilex and Rhododendron, exhibiting short LL (< 3 years). Leaf length was negatively correlated with LL in conifers, due to differences between Pinus and other genera; however, there was no correlation between LL and number of leaves. This study highlights the considerable variation and phylogenetic pattern in LL among temperate evergreen species, which has implications for carbon budgets and ecosystem models.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Abies / Pinus Idioma: En Revista: Oecologia Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: ALEMANHA / ALEMANIA / DE / DEUSTCHLAND / GERMANY

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Abies / Pinus Idioma: En Revista: Oecologia Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: ALEMANHA / ALEMANIA / DE / DEUSTCHLAND / GERMANY