Your browser doesn't support javascript.
Reinjection oilfield wastewater treatment using bioelectrochemical system and consequent corrosive community evolution on pipe material.
J Biosci Bioeng ; 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31587942
The corrosive issues are comprehensively caused in oilfield rejection system, in which sulfide is one of (bio-)chemical factors leading to high corrosive rate and blocking problem. Generally, aerobic treatment is a well-established and cost-effective unit for sulfide removal before oilfield wastewater reinjection. However, the residual dissolved oxygen (DO), which causes chemical, biological and electrochemical corrosion to water injection pipeline equipment, is still high after multi-stage filtration of DO removal. Here, a novel system to achieve quick and efficient DO removal through a three-electrode (cathode-anode-cathode)-upflow bioelectrochemical reactor (RCAC) was constructed before wastewater reinjection. Bioelectrodes were well established by utilizing organic matters of oilfield wastewater and conducted extracellular electron transport to achieve a steady DO removal from ∼5 mg/L to 0.01 mg/L (HRT 6 h), the DO removal efficiency reached approximately 100%, and the downside biocathode made the largest contribution for DO removal. In the treated wastewater, the corrosion rate of stainless steel N80 ultimately declined over 30 days testing. As a result of DO removal and ammonia conversion to nitrate by bioelectrodes, the corrosive microorganisms were substantially changed. Especially, sulfate-reducing bacteria (SRB) on the surface of N80 immersed in treated wastewater were decreased in abundance; while nitrate-reducing bacteria (NRB) enriched more, which can compete with SRB to prevent biological corrosion.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Assunto da revista: Engenharia Biomédica / Microbiologia Ano de publicação: 2019 Tipo de documento: Artigo