Your browser doesn't support javascript.
Stochastic Resolution of Identity for Real-Time Second-Order Green's Function: Ionization Potential and Quasi-Particle Spectrum.
J Chem Theory Comput ; 15(12): 6703-6711, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652067
We develop a stochastic resolution of identity approach to the real-time second-order Green's function (real-time sRI-GF2) theory, extending our recent work for imaginary-time Matsubara Green's function [ Takeshita et al. J. Chem. Phys. 2019 , 151 , 044114 ]. The approach provides a framework to obtain the quasi-particle spectra across a wide range of frequencies and predicts ionization potentials and electron affinities. To assess the accuracy of the real-time sRI-GF2, we study a series of molecules and compare our results to experiments as well as to a many-body perturbation approach based on the GW approximation, where we find that the real-time sRI-GF2 is as accurate as self-consistent GW. The stochastic formulation reduces the formal computatinal scaling from O(Ne5) down to O(Ne3) where Ne is the number of electrons. This is illustrated for a chain of hydrogen dimers, where we observe a slightly lower than cubic scaling for systems containing up to Ne ≈ 1000 electrons.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Aspecto clínico: Predição / Prognóstico Idioma: Inglês Revista: J Chem Theory Comput Ano de publicação: 2019 Tipo de documento: Artigo País de afiliação: Estados Unidos