Your browser doesn't support javascript.
Microalgae harvesting from wastewater by pH modulation and flotation: Assessing and optimizing operational parameters.
J Environ Manage ; 254: 109825, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733467
Microalgae harvesting is one of the major bottlenecks for the production of high-value microalgal products on a large scale, which encourages investigations of harvesting methods with better cost-benefits. Among these harvesting techniques, flotation stands out as a promising method, however it is still minimally explored when compared to the sedimentation method. In this study, the pH modulation followed by dissolved air flotation (DAF) was tested as a harvesting method for Chlorella sorokiniana cultivated in wastewater. The main aims of this study were to optimize the operational parameters of coagulation (pH, velocity gradient, and mixing time) and flotation (recirculation rate), check their reproducibility and resilience with the variability of wastewater characteristics, and evaluate the final wastewater quality after treatment using an optimized harvesting method. Parameter optimization was carried out using the one-factor-at-a-time method. The optimal parameters were a velocity gradient of 500 s-1, mixing time of 30 s, pH 12, and 20% of recirculation rate. High efficiencies were obtained for C. sorokiniana removal (96.5-97.9%), making it a successful process. Moreover, the photobioreactor effluent quality was also improved significantly after microalgae harvesting, with high nutrient removal (88.6-95.1% of total Kjeldahl nitrogen and 91.8-98.3% of total phosphorus) and organic matter removal (80.5-86.8% of chemical oxygen demand). The results showed the pH modulation and DAF as an effective process for wastewater treatment and biomass harvesting. This study also indicated the importance of operational optimization, not studied until now, in which the achieved results could be potentially applied as practical guidelines for microalgae harvesting on a large scale.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Assunto principal: Chlorella / Microalgas Idioma: Inglês Revista: J Environ Manage Ano de publicação: 2020 Tipo de documento: Artigo