Your browser doesn't support javascript.
ABSTRACT
Antibody-mediated autoimmune diseases are a major health burden. However, our understanding of how self-reactive B cells escape self-tolerance checkpoints to secrete pathogenic autoantibodies remains incomplete. Here, we demonstrate that patients with monogenic immune dysregulation caused by gain-of-function mutations in PIK3CD, encoding the p110δ catalytic subunit of phosphoinositide 3-kinase (PI3K), have highly penetrant secretion of autoreactive IgM antibodies. In mice with the corresponding heterozygous Pik3cd activating mutation, self-reactive B cells exhibit a cell-autonomous subversion of their response to self-antigen: instead of becoming tolerized and repressed from secreting autoantibody, Pik3cd gain-of-function B cells are activated by self-antigen to form plasmablasts that secrete high titers of germline-encoded IgM autoantibody and hypermutating germinal center B cells. However, within the germinal center, peripheral tolerance was still enforced, and there was selection against B cells with high affinity for self-antigen. These data show that the strength of PI3K signaling is a key regulator of pregerminal center B cell self-tolerance and thus represents a druggable pathway to treat antibody-mediated autoimmunity.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Ano de publicação: 2020 Tipo de documento: Artigo País de afiliação: Austrália