Your browser doesn't support javascript.
[Spatial and Temporal Characteristics of Air Quality and Cause Analysis of Heavy Pollution in Northeast China].
Huan Jing Ke Xue ; 40(11): 4810-4823, 2019 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854546
Northeastern China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. Based on ground monitoring data, satellite products and meteorological products of atmospheric pollutants in northeast China from 2013 to 2017, the characteristics of spatial and temporal distribution of air quality and the causes of heavy haze events in northeast China were discussed. It was found that the "Shenyang-Changchun-Harbin" city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index (AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of autumn. The three periods that typically experienced intense haze events were Period I from late-October to early-November (i. e., late autumn and early winter), Period Ⅱ from late-December to January (i. e., the coldest time in winter), and Period Ⅲ from April to mid-May (i. e., spring). During Period I, strong PM2.5 emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events (AQI>300). Period Ⅱ had frequent heavy haze events (200 < AQI < 300) in the coldest months of January and February(200 < AQI < 300), which were due to high PM2.5 emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period Ⅲ, with high PM10 concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM10 and enhance the levels of windblown dust from tilled soil.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Chinês Revista: Huan Jing Ke Xue Ano de publicação: 2019 Tipo de documento: Artigo País de afiliação: China