Your browser doesn't support javascript.
FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms.
Cancer Med ; 9(4): 1419-1429, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31893575
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Aspecto clínico: Predição / Prognóstico Idioma: Inglês Revista: Cancer Med Ano de publicação: 2020 Tipo de documento: Artigo País de afiliação: China