Your browser doesn't support javascript.
Circular RNA_LARP4 Sponges miR-1323 and Hampers Progression of Esophageal Squamous Cell Carcinoma Through Modulating PTEN/PI3K/AKT Pathway.
Dig Dis Sci ; 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897898


Emerged as important regulators in cancer progression, circular RNAs have been tested to participate in diverse biological processes. Former studies have suggested that circular RNA_LARP4 (circLARP4) exerts indispensable function on the development of different cancers such as gastric cancer and ovarian cancer. Nonetheless, the specific role of circLARP4 has not been discovered in ESCC.


The aim of this study is to explore the biological function and regulatory mechanism of circLARP4 in ESCC.


CircLARP4, miR-1323, and PTEN expression levels were quantified by RT-qPCR. CCK-8, EdU, caspase-3 activity, wound healing, transwell, and western blot assays were chosen to assess ESCC cell growth. Luciferase reporter, RIP, and RNA pull-down assays were performed to examine the interaction between miR-1323 and circLARP4 (or PTEN).


CircLARP4 expression was observably downregulated in ESCC cell lines, and overexpressed circLARP4 restrained cell proliferation and migration whereas boosted cell apoptosis in ESCC. Molecular mechanism experiments revealed that circLARP4 could act as a sponge for miR-1323 and negatively modulated miR-1323 expression in ESCC. Interestingly, the repression of miR-1323 was correlated with inhibitive cell proliferation, migration, and promotive apoptosis. Besides, miR-1323 bound with PTEN, and PTEN expression was negatively regulated by miR-1323 whereas positively regulated by circLARP4 in ESCC. Moreover, rescue assays testified that miR-1323 overexpression or PTEN deficiency could countervail the function of circLARP4 overexpression on ESCC progression. More importantly, circLARP4 played an inhibitory role in PI3K/AKT pathway.


CircLARP4 sponges miR-1323 and hampers tumorigenesis of ESCC through modulating PTEN/PI3K/AKT pathway.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Ano de publicação: 2020 Tipo de documento: Artigo País de afiliação: China