Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold.
Nat Commun
; 11(1): 33, 2020 Jan 07.
Artigo
em Inglês
| MEDLINE
| ID: mdl-31911585
ABSTRACT
Electrochemical CO[Formula see text] reduction is a potential route to the sustainable production of valuable fuels and chemicals. Here, we perform CO[Formula see text] reduction experiments on Gold at neutral to acidic pH values to elucidate the long-standing controversy surrounding the rate-limiting step. We find the CO production rate to be invariant with pH on a Standard Hydrogen Electrode scale and conclude that it is limited by the CO[Formula see text] adsorption step. We present a new multi-scale modeling scheme that integrates ab initio reaction kinetics with mass transport simulations, explicitly considering the charged electric double layer. The model reproduces the experimental CO polarization curve and reveals the rate-limiting step to be *COOH to *CO at low overpotentials, CO[Formula see text] adsorption at intermediate ones, and CO[Formula see text] mass transport at high overpotentials. Finally, we show the Tafel slope to arise from the electrostatic interaction between the dipole of *CO[Formula see text] and the interfacial field. This work highlights the importance of surface charging for electrochemical kinetics and mass transport.
Texto completo:
Disponível
Coleções:
Bases de dados internacionais
Base de dados:
MEDLINE
Idioma:
Inglês
Revista:
Nat Commun
Assunto da revista:
Biologia
/
Ciência
Ano de publicação:
2020
Tipo de documento:
Artigo
País de afiliação:
Estados Unidos
Similares
MEDLINE
...
LILACS
LIS