Your browser doesn't support javascript.
loading
Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold.
Ringe, Stefan; Morales-Guio, Carlos G; Chen, Leanne D; Fields, Meredith; Jaramillo, Thomas F; Hahn, Christopher; Chan, Karen.
Afiliação
  • Ringe S; SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA. sringe@stanford.edu.
  • Morales-Guio CG; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. sringe@stanford.edu.
  • Chen LD; SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Fields M; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Jaramillo TF; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.
  • Hahn C; Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada.
  • Chan K; SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
Nat Commun ; 11(1): 33, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911585
ABSTRACT
Electrochemical CO[Formula see text] reduction is a potential route to the sustainable production of valuable fuels and chemicals. Here, we perform CO[Formula see text] reduction experiments on Gold at neutral to acidic pH values to elucidate the long-standing controversy surrounding the rate-limiting step. We find the CO production rate to be invariant with pH on a Standard Hydrogen Electrode scale and conclude that it is limited by the CO[Formula see text] adsorption step. We present a new multi-scale modeling scheme that integrates ab initio reaction kinetics with mass transport simulations, explicitly considering the charged electric double layer. The model reproduces the experimental CO polarization curve and reveals the rate-limiting step to be *COOH to *CO at low overpotentials, CO[Formula see text] adsorption at intermediate ones, and CO[Formula see text] mass transport at high overpotentials. Finally, we show the Tafel slope to arise from the electrostatic interaction between the dipole of *CO[Formula see text] and the interfacial field. This work highlights the importance of surface charging for electrochemical kinetics and mass transport.
Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Nat Commun Assunto da revista: Biologia / Ciência Ano de publicação: 2020 Tipo de documento: Artigo País de afiliação: Estados Unidos

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Nat Commun Assunto da revista: Biologia / Ciência Ano de publicação: 2020 Tipo de documento: Artigo País de afiliação: Estados Unidos
...