Your browser doesn't support javascript.
Conservation of eATP perception throughout multicellular animal evolution: Identification and functional characterization of coral and amphioxus P2X7-like receptors and flounder P2X7 receptor.
Dev Comp Immunol ; 106: 103641, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32045589
Perception of extracellular ATP (eATP), a common endogenous damage-associated molecular pattern, is through its receptor P2X7R. If eATP/P2X7R signaling is conserved throughout animal evolution is unknown. Moreover, little information is currently available regarding P2X7R in invertebrates. Here we demonstrated that the coral P2X7-like receptor, AdP2X7RL, the amphioxus P2X7-like receptor, BjP2X7RL and the flounder P2X7 receptor, PoP2X7R, shared common features characteristic of mammalian P2X7R, and their 3D structures displayed high resemblance to that of human P2X7R. Expression of Adp2x7rl, Bjp2x7rl and Pop2x7r was all subjected to the regulation by LPS and ATP. We also showed that AdP2X7RL, BjP2X7RL and PoP2X7R were distributed on the plasma membrane in AdP2X7RL-, BjP2X7RL- and PoP2X7R-expressing HEK cells, and had strong affinity to eATP. Importantly, the binding of AdP2X7RL, BjP2X7RL and PoP2X7R to eATP all induced similar downstream responses, including induction of cytokines (IL-1ß, IL-6, IL-8 and CCL-2), enhancement of phagocytosis and activation of AKT/ERK-associated signaling pathway observed for mammalian P2X7R. Collectively, our results indicate for the first time that both coral and amphioxus P2X7RL as well as flounder P2X7R can interact with eATP, and induce events that trigger mammalian mechanisms, suggesting the high conservation of eATP perception throughout multicellular animal evolution.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Dev Comp Immunol Ano de publicação: 2020 Tipo de documento: Artigo País de afiliação: China