Your browser doesn't support javascript.
Controlling Electron Spin Decoherence in Nd-based Complexes via Symmetry Selection.
iScience ; 23(3): 100926, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32146324
ABSTRACT
Long decoherence time is a key consideration for molecular magnets in the application of the quantum computation. Although previous studies have shown that the local symmetry of spin carriers plays a crucial part in the spin-lattice relaxation process, its role in the spin decoherence is still unclear. Herein, two nine-coordinated capped square antiprism neodymium moieties [Nd(CO3)4H2O]5- with slightly different local symmetries, C1 versus C4 (1 and 2), are reported, which feature in the easy-plane magnetic anisotropy as shown by the high-frequency electron paramagnetic resonance (HF-EPR) studies. Detailed analysis of the relaxation time suggests that the phonon bottleneck effect is essential to the magnetic relaxation in the crystalline samples of 1 and 2. The 240 GHz Pulsed EPR studies show that the higher symmetry results in longer decoherence times, which is supported by the first principle calculations.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: IScience Ano de publicação: 2020 Tipo de documento: Artigo