Your browser doesn't support javascript.
loading
Animal models for treating spinal cord injury using biomaterials-based tissue engineering strategies.
Li, Jiao Jiao; Liu, Haifeng; Zhu, Yuanyuan; Yan, Lei; Liu, Ruxing; Wang, Guishan; Wang, Bin; Zhao, Bin.
Afiliação
  • Li JJ; University of Technology Sydney, 1994, School of Biomedical Engineering, Ultimo, New South Wales, Australia; jiaojiao.li@uts.edu.au.
  • Liu H; Shanxi Medical University Second Affiliated Hospital, 74761, Department of Orthopedics, Taiyuan, Shanxi , China; lhf7037@163.com.
  • Zhu Y; Shanxi Medical University Second Affiliated Hospital, 74761, Department of Pharmacy, Taiyuan, Shanxi , China; zhuyyuan123@163.com.
  • Yan L; Shanxi Medical University Second Affiliated Hospital, 74761, Department of Orthopedics, Taiyuan, Shanxi , China; yanleisxmu@163.com.
  • Liu R; Shanxi Medical University Second Affiliated Hospital, 74761, Department of Orthopedics, Taiyuan, Shanxi , China; 271978465@qq.com.
  • Wang G; Shanxi Medical University, 74648, Department of Biochemistry and Molecular Biology, Taiyuan, Shanxi , China; 877133028@qq.com.
  • Wang B; Shanxi Medical University Second Affiliated Hospital, 74761, Department of Orthopedics, Taiyuan, Shanxi , China; wangbin_pku@163.com.
  • Zhao B; Shanxi Medical University Second Affiliated Hospital, 74761, Department of Orthopedics, Taiyuan, Shanxi , China; zzbb2005@163.com.
Artigo em Inglês | MEDLINE | ID: mdl-33267667
ABSTRACT

OBJECTIVE:

To provide an up-to-date review of studies that used preclinical animal models for the evaluation of tissue engineering treatments for spinal cord injury (SCI), which involved the use of biomaterials with or without the addition of cells or biomolecules.

METHODS:

Electronic search of the PubMed, Web of Science and Embase databases was performed for relevant studies published between January 2009 and December 2019.

RESULTS:

1579 articles were retrieved, of which 58 studies were included for analysis. Among the included studies, rats were the most common species used for animal models of SCI, while complete transection was the most commonly used injury pattern. Immediate intervention after injury was conducted in the majority of studies, and 8 weeks was the most common final time point of outcome assessment. A wide range of natural and synthetic biomaterials with different morphologies were used as a part of tissue engineering treatments for SCI, including scaffolds, hydrogels and particles.

CONCLUSION:

Experimental parameters in studies using SCI animal models to evaluate tissue engineering treatments should be carefully considered to match the purpose of the study. Biomaterials that have functional modifications or are applied in combination with cells and biomolecules can be effective in creating a permissive environment for SCI repair in preclinical animal models.
Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Tipo de estudo: Revisão sistemática Idioma: Inglês Assunto da revista: Biotecnologia / Histologia Ano de publicação: 2020 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Tipo de estudo: Revisão sistemática Idioma: Inglês Assunto da revista: Biotecnologia / Histologia Ano de publicação: 2020 Tipo de documento: Artigo