Long non-coding RNA and mRNA profile analysis in the parotid gland of mouse with type 2 diabetes.
Life Sci
; 268: 119009, 2021 Mar 01.
Artigo
em Inglês
| MEDLINE
| ID: mdl-33412210
ABSTRACT
AIMS:
Salivary gland dysfunction is a common complication of diabetes mellitus (DM). Long non-coding RNA (lncRNA) is evidenced to involve in the functional regulation of salivary gland, however, its role in DM-impaired gland is unknown. Therefore, this study aimed to investigate the expression profiles and functional networks of lncRNA in the parotid glands (PGs) of DM mice. MAINMETHODS:
Microarray was used to detect lncRNA and messenger RNA (mRNA) expression profiles in the PGs from db/db and db/m mice. Eleven differently expressed (DE) lncRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) network analysis, as well as the following Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Pearson's coefficient correlation analysis was used to analyze the correlations between DE lncRNAs expression and DM pathology. KEYFINDINGS:
By using a 2-fold change and P < 0.05 as the cutoff criteria, 1650 DE lncRNAs (758 upregulated and 892 downregulated) and 1073 mRNAs (563 upregulated and 510 downregulated) were identified in the PGs of db/db mice compared to db/m mice. GO and KEGG analysis of DE mRNA suggested that activated inflammation response and downregulated ion transport might count for the dysfunction of diabetic PG. CNC and ceRNA networks analysis of 11 DE lncRNAs showed that the inflammation process and its related signaling pathways including advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling pathway in diabetic complications, cytokine-cytokine receptor interaction, chemokine signaling pathway, apoptosis, and cell adhesion molecules were significantly enriched. The alterations of lncRNAs were closely correlated with higher blood glucose and serum insulin levels in mice.SIGNIFICANCE:
We identified multiple lncRNAs/mRNAs and several signaling pathways that may involve in the pathogenesis of diabetic salivary injury, providing new insight into potential target of diabetic hyposalivation.
Texto completo:
Disponível
Coleções:
Bases de dados internacionais
Base de dados:
MEDLINE
Tipo de estudo:
Estudo prognóstico
Idioma:
Inglês
Revista:
Life Sci
Ano de publicação:
2021
Tipo de documento:
Artigo
Similares
MEDLINE
...
LILACS
LIS