Your browser doesn't support javascript.
loading
Exploding and weeping ceramics.
Gu, Hanlin; Rohmer, Jascha; Jetter, Justin; Lotnyk, Andriy; Kienle, Lorenz; Quandt, Eckhard; James, Richard D.
Afiliação
  • Gu H; Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, USA. guxxx369@umn.edu.
  • Rohmer J; Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany. jaro@tf.uni-kiel.de.
  • Jetter J; Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany. juje@tf.uni-kiel.de.
  • Lotnyk A; Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany. andriy.lotnyk@iom-leipzig.de.
  • Kienle L; Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China. andriy.lotnyk@iom-leipzig.de.
  • Quandt E; Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany. lk@tf.uni-kiel.de.
  • James RD; Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany. eq@tf.uni-kiel.de.
Nature ; 599(7885): 416-420, 2021 11.
Article em En | MEDLINE | ID: mdl-34789904
ABSTRACT
The systematic tuning of crystal lattice parameters to achieve improved kinematic compatibility between different phases is a broadly effective strategy for improving the reversibility, and lowering the hysteresis, of solid-solid phase transformations1-11. (Kinematic compatibility refers to the fitting together of the phases.) Here we present an apparently paradoxical example in which tuning to near perfect kinematic compatibility results in an unusually high degree of irreversibility. Specifically, when cooling the kinematically compatible ceramic (Zr/Hf)O2(YNb)O4 through its tetragonal-to-monoclinic phase transformation, the polycrystal slowly and steadily falls apart at its grain boundaries (a process we term weeping) or even explosively disintegrates. If instead we tune the lattice parameters to satisfy a stronger 'equidistance' condition (which additionally takes into account sample shape), the resulting material exhibits reversible behaviour with low hysteresis. These results show that a diversity of behaviours-from reversible at one extreme to explosive at the other-is possible in a chemically homogeneous ceramic system by manipulating conditions of compatibility in unexpected ways. These concepts could prove critical in the current search for a shape-memory oxide ceramic9-12.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos