Your browser doesn't support javascript.
loading
A WWP2-PTEN-KLF5 signaling axis regulates odontoblast differentiation and dentinogenesis in mice.
Fu, Jing; Zhang, Xiaobo; Zheng, Huiwen; Yang, Guobin; Chen, Zhi; Yuan, Guohua.
Afiliação
  • Fu J; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
  • Zhang X; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
  • Zheng H; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
  • Yang G; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Chen Z; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Yuan G; The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China. Electron
J Biol Chem ; 298(8): 102220, 2022 08.
Article em En | MEDLINE | ID: mdl-35780838
ABSTRACT
WW domain-containing E3 Ubiquitin-protein ligase 2 (WWP2) has been found to positively regulate odontoblastic differentiation by monoubiquitinating the transcription factor Kruppel-like factor 5 (KLF5) in a cell culture system. However, the in vivo role of WWP2 in mouse teeth remains unknown. To explore this, here we generated Wwp2 knockout (Wwp2 KO) mice. We found that molars in Wwp2 KO mice exhibited thinner dentin, widened predentin, and reduced numbers of dentinal tubules. In addition, expression of the odontoblast differentiation markers Dspp and Dmp1 was decreased in the odontoblast layers of Wwp2 KO mice. These findings demonstrate that WWP2 may facilitate odontoblast differentiation and dentinogenesis. Furthermore, we show for the first time that phosphatase and tensin homolog (PTEN), a tumor suppressor, is expressed in dental papilla cells and odontoblasts of mouse molars and acts as a negative regulator of odontoblastic differentiation. Further investigation indicated that PTEN is targeted by WWP2 for degradation during odontoblastic differentiation. We demonstrate PTEN physically interacts with and inhibits the transcriptional activity of KLF5 on Dspp and Dmp1. Finally, we found WWP2 was able to suppress the interaction between PTEN and KLF5, which diminished the inhibition effect of PTEN on KLF5. Taken together, this study confirms the essential role of WWP2 and the WWP2-PTEN-KLF5 signaling axis in odontoblast differentiation and dentinogenesis in vivo.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ubiquitina-Proteína Ligases / Dentinogênese / PTEN Fosfo-Hidrolase / Fatores de Transcrição Kruppel-Like / Odontoblastos Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ubiquitina-Proteína Ligases / Dentinogênese / PTEN Fosfo-Hidrolase / Fatores de Transcrição Kruppel-Like / Odontoblastos Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA