Your browser doesn't support javascript.
loading
Multiomics Analyses Reveal Microbiome-Gut-Brain Crosstalk Centered on Aberrant Gamma-Aminobutyric Acid and Tryptophan Metabolism in Drug-Naïve Patients with First-Episode Schizophrenia.
Wang, Zhuo; Yuan, Xiuxia; Zhu, Zijia; Pang, Lijuan; Ding, Shizhi; Li, Xue; Kang, Yulin; Hei, Gangrui; Zhang, Liyuan; Zhang, Xiaoyun; Wang, Shuying; Jian, Xuemin; Li, Zhiqiang; Zheng, Chenxiang; Fan, Xiaoduo; Hu, Shaohua; Shi, Yongyong; Song, Xueqin.
Afiliação
  • Wang Z; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Yuan X; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
  • Zhu Z; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Pang L; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
  • Ding S; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Li X; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
  • Kang Y; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Hei G; Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China.
  • Zhang L; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Zhang X; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Wang S; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Jian X; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
  • Li Z; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
  • Zheng C; The Affiliated Hospital of Qingdao University and the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, China.
  • Fan X; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University; Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China.
  • Hu S; Psychotic Disorders Program, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA.
  • Shi Y; Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
  • Song X; Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University; Henan International Joint Laboratory of Biological Psychiatry; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
Schizophr Bull ; 50(1): 187-198, 2024 Jan 01.
Article em En | MEDLINE | ID: mdl-37119525
ABSTRACT
BACKGROUND AND

HYPOTHESIS:

Schizophrenia (SCZ) is associated with complex crosstalk between the gut microbiota and host metabolism, but the underlying mechanism remains elusive. Investigating the aberrant neurotransmitter processes reflected by alterations identified using multiomics analysis is valuable to fully explain the pathogenesis of SCZ. STUDY

DESIGN:

We conducted an integrative analysis of multiomics data, including the serum metabolome, fecal metagenome, single nucleotide polymorphism data, and neuroimaging data obtained from a cohort of 127 drug-naïve, first-episode SCZ patients and 92 healthy controls to characterize the microbiome-gut-brain axis in SCZ patients. We used pathway-based polygenic risk score (PRS) analyses to determine the biological pathways contributing to genetic risk and mediation effect analyses to determine the important neuroimaging features. Additionally, a random forest model was generated for effective SCZ diagnosis. STUDY

RESULTS:

We found that the altered metabolome and dysregulated microbiome were associated with neuroactive metabolites, including gamma-aminobutyric acid (GABA), tryptophan, and short-chain fatty acids. Further structural and functional magnetic resonance imaging analyses highlighted that gray matter volume and functional connectivity disturbances mediate the relationships between Ruminococcus_torgues and Collinsella_aerofaciens and symptom severity and the relationships between species Lactobacillus_ruminis and differential metabolites l-2,4-diaminobutyric acid and N-acetylserotonin and cognitive function. Moreover, analyses of the Polygenic Risk Score (PRS) support that alterations in GABA and tryptophan neurotransmitter pathways are associated with SCZ risk, and GABA might be a more dominant contributor.

CONCLUSIONS:

This study provides new insights into systematic relationships among genes, metabolism, and the gut microbiota that affect brain functional connectivity, thereby affecting SCZ pathogenesis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esquizofrenia / Microbiota / Microbioma Gastrointestinal Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Schizophr Bull Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esquizofrenia / Microbiota / Microbioma Gastrointestinal Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Schizophr Bull Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA