Your browser doesn't support javascript.
loading
Self-assembly and interaction mechanisms of edible dock protein and flavonoids regulated by the phenolic hydroxyl position.
Zhou, Qian; Wang, Xiao-Jie; Li, Jing; Wu, Yu-Ru; Wang, Wei; Yu, Zhen-Yu; Xiao, Ya-Qing; Liu, Ying-Nan; Li, Shi-Yi; Zheng, Ming-Ming; Zhou, Yi-Bin; Liu, Kang.
Afiliação
  • Zhou Q; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Wang XJ; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Li J; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Wu YR; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Wang W; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Yu ZY; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Xiao YQ; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Liu YN; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Li SY; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Zheng MM; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Zhou YB; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
  • Liu K; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural Un
Food Chem ; 424: 136383, 2023 Oct 30.
Article em En | MEDLINE | ID: mdl-37207603
ABSTRACT
In this study, chrysin (Chr), baicalein (Bai), apigenin (Api) and galangin (Gal) were selected as the representative flavonoids with different position of phenolic hydroxyl groups, and edible dock protein (EDP) was used as a material to construct delivery system. Subsequently, the molecular interactions and functional properties of flavonoids-loaded EDP nanomicelles were investigated. Results exhibited that hydrogen bond, hydrophobic interaction and van der Waals force were the main driving forces for self-assembly of flavonoids and EDP molecules. Meanwhile, this self-assembly remarkably enhance the storage and digestion stability of flavonoid compounds. Among four flavonoids, the order of loading ability was Api > Gal > Bai > Chr. Herein, Api had a largest loading capacity (6.74%) because of its active phenolic hydroxyl group in ring B. These results suggested that the position of phenolic hydroxyl groups in flavonoids is a key factor to regulate its self-assembly with protein molecules.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Flavonoides / Radical Hidroxila Idioma: En Revista: Food Chem Ano de publicação: 2023 Tipo de documento: Article País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Flavonoides / Radical Hidroxila Idioma: En Revista: Food Chem Ano de publicação: 2023 Tipo de documento: Article País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM