Your browser doesn't support javascript.
loading
Organo-Photocatalytic Anti-Markovnikov Hydroamidation of Alkenes with Sulfonyl Azides: A Combined Experimental and Computational Study.
Fu, Rui; Xu, Mengyu; Wang, Yujing; Wu, Xinxin; Bao, Xiaoguang.
Afiliação
  • Fu R; Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
  • Xu M; Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
  • Wang Y; Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
  • Wu X; Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Bao X; Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
Angew Chem Int Ed Engl ; 63(26): e202406069, 2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38630112
ABSTRACT
The construction of C(sp3)-N bonds via direct N-centered radical addition with olefins under benign conditions is a desirable but challenging strategy. Herein, we describe an organo-photocatalytic approach to achieve anti-Markovnikov alkene hydroamidation with sulfonyl azides in a highly efficient manner under transition-metal-free and mild conditions. A broad range of substrates, including both activated and unactivated alkenes, are suitable for this protocol, providing a convenient and practical method to construct sulfonylamide derivatives. A synergistic experimental and computational mechanistic study suggests that the additive, Hantzsch ester (HE), might undergo a triplet-triplet energy transfer manner to achieve photosensitization by the organo-photocatalyst under visible light irradiation. Next, the resulted triplet excited state 3HE* could lead to a homolytic cleavage of C4-H bond, which triggers a straightforward H-atom transfer (HAT) style in converting sulfonyl azide to the corresponding key amidyl radical. Subsequently, the addition of the amidyl radical to alkene followed by HAT from p-toluenethiol could proceed to afford the desired anti-Markovnikov hydroamidation product. It is worth noting that mechanistic pathway bifurcation could be possible for this reaction. A feasible radical chain propagation mechanistic pathway is also proposed to rationalize the high efficiency of this reaction.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: ALEMANHA / ALEMANIA / DE / DEUSTCHLAND / GERMANY

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: ALEMANHA / ALEMANIA / DE / DEUSTCHLAND / GERMANY