Your browser doesn't support javascript.
loading
A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery.
An, Ran; Xie, Congwei; Chu, Dongdong; Li, Fuming; Pan, Shilie; Yang, Zhihua.
Afiliação
  • An R; Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road,
  • Xie C; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Chu D; Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road,
  • Li F; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Pan S; Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road,
  • Yang Z; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces ; 16(28): 36658-36666, 2024 Jul 17.
Article em En | MEDLINE | ID: mdl-38976617
ABSTRACT
Modern crystal structure prediction methods based on structure generation algorithms and first-principles calculations play important roles in the design of new materials. However, the cost of these methods is very expensive because their success mostly relies on the efficient sampling of structures and the accurate evaluation of energies for those sampled structures. Herein, we develop a Machine-learning-Assisted CRYStalline Materials sAmpling sysTem (MAXMAT) aiming to accelerate the prediction of new crystal structures. For a given chemical composition, MAXMAT can generate efficient crystal structures with the help of a Python package for crystal structure generation (PyXtal) and can quickly evaluate the energies of these generated structures using a well-developed machine learning interaction potential model (M3GNET). We have used MAXMAT to perform crystal structure searches for three different chemical systems (TiO2, MgAl2O4, and BaBOF3) to test its accuracy and efficiency. Furthermore, we apply MAXMAT to predict new nonlinear optical materials, suggesting several thermodynamically synthesizable structures with high performance in LiZnGaS3 and CaBOF3 systems.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos