Your browser doesn't support javascript.
loading
Thermodynamic profiles for cotranslational trigger factor substrate recognition.
Herling, Therese W; Cassaignau, Anaïs M E; Wentink, Anne S; Peter, Quentin A E; Kumar, Pavan C; Kartanas, Tadas; Schneider, Matthias M; Cabrita, Lisa D; Christodoulou, John; Knowles, Tuomas P J.
Afiliação
  • Herling TW; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  • Cassaignau AME; Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK.
  • Wentink AS; Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK.
  • Peter QAE; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  • Kumar PC; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  • Kartanas T; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  • Schneider MM; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  • Cabrita LD; Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK.
  • Christodoulou J; Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK.
  • Knowles TPJ; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Sci Adv ; 10(28): eadn4824, 2024 Jul 12.
Article em En | MEDLINE | ID: mdl-38985872
ABSTRACT
Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ligação Proteica / Termodinâmica Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ligação Proteica / Termodinâmica Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA