Your browser doesn't support javascript.
loading
Personalized compression therapeutic textiles: digital design, development, and biomechanical evaluation.
Shi, Yu; Liu, Rong; Ye, Chongyang.
Afiliação
  • Shi Y; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.
  • Liu R; Laboratory for Artificial Intelligence in Design, Hong Kong, Hong Kong SAR, China.
  • Ye C; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.
Front Bioeng Biotechnol ; 12: 1405576, 2024.
Article em En | MEDLINE | ID: mdl-38988869
ABSTRACT
Physical-based external compression medical modalities could provide sustainable interfacial pressure dosages for daily healthcare prophylaxis and clinic treatment of chronic venous disease (CVD). However, conventional ready-made compression therapeutic textiles (CTs) with improper morphologies and ill-fitting of pressure exertions frequently limit patient compliance in practical application. Therefore, the present study fabricated the personalized CTs for various subjects through the proposed comprehensive manufacturing system. The individual geometric dimensions and morphologic profiles of lower extremities were characterized according to three-dimensional (3D) body scanning and reverse engineering technologies. Through body anthropometric analysis and pressure optimization, the knitting yarn and machinery variables were determined as the digital design strategies for 3D seamless fabrication of CTs. Next, to visually simulate the generated pressure mappings of developed CTs, the subject-specific 3D finite element (FE) CT-leg modelings with high accuracy and acceptability (pressure prediction error ratio 11.00% ± 7.78%) were established based on the constructed lower limb models and determined tissue stiffness. Moreover, through the actual in vivo trials, the prepared customized CTs efficiently (Sig. <0.05; ρ = 0.97) distributed the expected pressure requirements referring to the prescribed compression magnitudes (pressure error ratio 10.08% ± 7.75%). Furthermore, the movement abilities and comfortable perceptions were evaluated subjectively for the ergonomic wearing comfort (EWC) assessments. Thus, this study promotes the precise pressure management and clinical efficacy for targeted users and leads an operable development approach for related medical biomaterials in compression therapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: CH / SUIZA / SUÍÇA / SWITZERLAND

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: CH / SUIZA / SUÍÇA / SWITZERLAND