Controlled aggregation of Pt/PtH/Rh/RhH doped silver superatomic nanoclusters into 16-electron supermolecules.
Chem Sci
; 2024 Aug 22.
Article
em En
| MEDLINE
| ID: mdl-39246344
ABSTRACT
The assembly of discrete superatomic nanoclusters into larger constructs is a significant stride towards developing a new set of artificial/pseudo-elements. Herein, we describe a novel series of 16-electron supermolecules derived from the combination of discrete 8-electron superatomic synthons containing interstitial hydrides as vertex-sharing building blocks. The symmetric (RhH)2Ag33[S2P(OPr)2]17 (1) and asymmetric PtHPtAg32[S2P(OPr)2]17 (2) are characterized by ESI-MS, SCXRD, NMR, UV-vis absorption spectra, electrochemical and computational methods. Cluster 1 represents the first group 9-doped 16-electron supermolecule, composed of two icosahedral (RhH)@Ag12 8-electron superatoms sharing a silver vertex. Cluster 2 results from the assembly of two distinct icosahedral units, Pt@Ag12, and (PtH)@Ag12. In both cases, the presence of the interstitial hydrides is unprecedented. The stability of the supermolecules is investigated, and 2 spontaneously transforms into Pt2Ag33[S2P(OPr)2]17 (3) with thermal treatment. The lability of the hydride within the icosahedral framework in solution at low-temperature was confirmed by the VT-NMR.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chem Sci
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Reino Unido