Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(33): 35864-35872, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39184465

RESUMO

Lightweight, surface hydrophobic, highly insulating, and long-lasting aerogels are required for energy conservation and ice-repellent applications. Here, we present the conversion of fly ash to a silica-alumina aerogel (SAA) by utilizing its high silica content. The extracted silica component replaces expensive precursors typically used in conventional aerogel production. Ice adhesion performance was compared to that of polypropylene (PP), an insulating commodity polymer. First, we removed some salt impurities and heavy metals via water and alkaline washing protocols. Then, we produced SAA via the ambient pressure drying method by using trimethylchlorosilane (TMCS) as an adhesion promoter. The newly produced SAA has a surface area of 810 m2 g-1 and shows hydrophobic properties with a contact angle of 140 ± 5°. The thermal conductivity of SAA is 0.0238 W m-1 K-1 with C P = 1.1922 MJ m-3 K-1. The ice adhesion strength of the PP substrate was calculated as 188.30 ± 51.24 kPa, while the ice adhesion strength of the SAA was measured as 1.21 ± 0.40 kPa, which was about 150 times lower than that of PP. This indicated that SAA had icephobic properties since ice adhesion strength was less than 10 kPa. This study demonstrates that fly ash-based SAA can be utilized as an economical material with a large surface area and exceptional thermal insulation capacity and is free of harmful compounds (heavy metals), making it potentially suitable as an anti-ice thermal insulation material.

2.
Nanomedicine (Lond) ; 16(11): 925-941, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015971

RESUMO

Aim: Superparamagnetic cubic iron oxide nanoparticles (IONPs) were synthesized and functionalized with meso-2,3-dimercaptosuccinic acid (DMSA) as a potential agent for cancer treatment. Methods: Monodisperse cubic IONPs with a high value of saturation magnetization were synthesized by thermal decomposition method and functionalized with DMSA via ligand exchange reaction, and their cytotoxic effects on HeLa cells were investigated. Results: DMSA functionalized cubic IONPs with an edge length of 24.5 ± 1.9 nm had a specific absorption rate value of 197.4 W/gFe (15.95 kA/m and 488 kHz) and showed slight cytotoxicity on HeLa cells when incubated with 3.3 × 1010, 6.6 × 1010 and 9.9 × 1010 NP/mL for 24, 48 and 72 h. Conclusion: To the best of our knowledge, this is the first study to investigate both the cytotoxic effects of DMSA-coated cubic IONPs on HeLa cells and hyperthermia performance of these nanoparticles.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Compostos Férricos , Células HeLa , Humanos , Ligantes , Nanopartículas Magnéticas de Óxido de Ferro , Succímero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA