Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0290215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875172

RESUMO

Annually, urinary tract infections (UTIs) affect over a hundred million people worldwide. Early detection of high-risk individuals can help prevent hospitalization for UTIs, which imposes significant economic and social burden on patients and caregivers. We present two methods to generate risk score models for UTI hospitalization. We utilize a sample of patients from the insurance claims data provided by the Centers for Medicare and Medicaid Services to develop and validate the proposed methods. Our dataset encompasses a wide range of features, such as demographics, medical history, and healthcare utilization of the patients along with provider quality metrics and community-based metrics. The proposed methods scale and round the coefficients of an underlying logistic regression model to create scoring tables. We present computational experiments to evaluate the prediction performance of both models. We also discuss different features of these models with respect to their impact on interpretability. Our findings emphasize the effectiveness of risk score models as practical tools for identifying high-risk patients and provide a quantitative assessment of the significance of various risk factors in UTI hospitalizations such as admission to ICU in the last 3 months, cognitive disorders and low inpatient, outpatient and carrier costs in the last 6 months.


Assuntos
Hospitalização , Infecções Urinárias , Humanos , Infecções Urinárias/epidemiologia , Infecções Urinárias/diagnóstico , Feminino , Fatores de Risco , Masculino , Estados Unidos/epidemiologia , Medição de Risco/métodos , Modelos Logísticos , Idoso , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA