Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 288(41): 29621-32, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23995838

RESUMO

Strongly activated "coated" platelets are characterized by increased phosphatidylserine (PS) surface expression, α-granule protein retention, and lack of active integrin αIIbß3. To study how they are incorporated into thrombi despite a lack of free activated integrin, we investigated the structure, function, and formation of the α-granule protein "coat." Confocal microscopy revealed that fibrin(ogen) and thrombospondin colocalized as "cap," a single patch on the PS-positive platelet surface. In aggregates, the cap was located at the point of attachment of the PS-positive platelets. Without fibrin(ogen) retention, their ability to be incorporated in aggregates was drastically reduced. The surface fibrin(ogen) was strongly decreased in the presence of a fibrin polymerization inhibitor GPRP and also in platelets from a patient with dysfibrinogenemia and a fibrinogen polymerization defect. In contrast, a fibrinogen-clotting protease ancistron increased the amount of fibrin(ogen) and thrombospondin on the surface of the PS-positive platelets stimulated with collagen-related peptide. Transglutaminases are also involved in fibrin(ogen) retention. However, platelets from patients with factor XIII deficiency had normal retention, and a pan-transglutaminase inhibitor T101 had only a modest inhibitory effect. Fibrin(ogen) retention was normal in Bernard-Soulier syndrome and kindlin-3 deficiency, but not in Glanzmann thrombasthenia lacking the platelet pool of fibrinogen and αIIbß3. These data show that the fibrin(ogen)-covered cap, predominantly formed as a result of fibrin polymerization, is a critical mechanism that allows coated (or rather "capped") platelets to become incorporated into thrombi despite their lack of active integrins.


Assuntos
Plaquetas/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Agregação Plaquetária , Trombospondinas/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Western Blotting , Feminino , Citometria de Fluxo , Humanos , Microscopia Confocal , Oligopeptídeos/farmacologia , Fosfatidilserinas/metabolismo , Polimerização/efeitos dos fármacos , Trombastenia/sangue , Trombastenia/metabolismo , Trombose/metabolismo , Transglutaminases/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 32(10): 2475-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837472

RESUMO

OBJECTIVE: Phosphatidylserine (PS) externalization by platelets upon activation is a key event in hemostasis and thrombosis. It is currently believed that strong stimulation of platelets forms 2 subpopulations, only 1 of which expresses PS. METHODS AND RESULTS: Here, we demonstrate that physiological stimulation leads to the formation of not 1 but 2 types of PS-expressing activated platelets, with dramatically different properties. One subpopulation sustained increased calcium level after activation, whereas another returned to the basal low-calcium state. High-calcium PS-positive platelets had smaller size, high surface density of fibrin(ogen), no active integrin α(IIb)ß(3), depolarized mitochondrial membranes, gradually lost cytoplasmic membrane integrity, and were poorly aggregated. In contrast, the low-calcium PS-positive platelets had normal size, retained mitochondrial membrane potential and cytoplasmic membrane integrity, and combined retention of fibrin(ogen) with active α(IIb)ß(3) and high proaggregatory function. Formation of low-calcium PS-positive platelets was promoted by platelet concentration increase or shaking and was decreased by integrin α(IIb)ß(3) antagonists, platelet dilution, or in platelets from kindlin-3-deficient and Glanzmann thrombasthenia patients. CONCLUSIONS: Identification of a novel PS-expressing platelet subpopulation with low calcium regulated by integrin α(IIb)ß(3) can be important for understanding the mechanisms of PS exposure and thrombus formation.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Trombastenia/fisiopatologia , Plaquetas/patologia , Cálcio/metabolismo , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Neoplasias/deficiência , Fosfatidilserinas/metabolismo , Trombastenia/patologia , Trombose/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA