Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 20(2): 95-108, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409928

RESUMO

Although small spills of non-ideal organic solvent mixtures are ubiquitous undesirable events in occupational settings, the potential risk of exposure associated with such scenarios remains insufficiently investigated. This study aimed to examine the impact of non-ideality on evaporation rates and contaminant air concentrations resulting from small spills of organic solvent mixtures. Evaporation rate constants alphas (α) were experimentally measured for five pure solvents using a gravimetric approach during solvent evaporation tests designed to simulate small spills of solvents. Two equations were used for estimating contaminants' evaporation rates from aqueous mixtures assuming either ideal or non-ideal behavior based on the pure-chemical alpha values. A spill model also known as the well-mixed room model with exponentially decreasing emission rate was used to predict air concentrations during various spill scenarios based on the two sets of estimated evaporation rates. Model predictive performance was evaluated by comparing the estimates against real-time concentrations measured for the same scenarios. Evaluations for 12 binary non-ideal aqueous mixtures found that the estimated evaporation rates accounting for the correction by the activity coefficients of the solvents (median = 0.0318 min-1) were higher than the evaporation rates estimated without the correction factor (median = 0.00632 min-1). Model estimates using the corrected evaporation rates reasonably agreed with the measured values, with a median predicted peak concentrations-to-measured peak concentrations ratio of 0.92 (0.81 to 1.32) and a median difference between the predicted and the measured peak times of -5 min. By contrast, when the non-corrected evaporation rates were used, the median predicted peak concentrations-to-measured peak concentrations ratio was 0.31 (0.08 to 0.75) and the median difference between the predicted and the measured peak times was +33 min. Results from this study demonstrate the importance of considering the non-ideality effect for accurately estimating evaporation rates and contaminant air concentrations generated by solvent mixtures. Moreover, this study is a step further in improving knowledge of modeling exposures related to small spills of organic solvent mixtures.


Assuntos
Ambiente Controlado , Água , Solventes/análise
2.
J Occup Environ Hyg ; 19(4): 210-222, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143378

RESUMO

Exposures to vapors generated by small spills of organic solvents are common in the occupational hygiene practice. In these scenarios, contaminant mass release is exponentially decreasing, driven by an evaporation rate constant alpha (α). Knowing α is fundamental for adequately modeling peak concentrations and/or short-term exposures that occur and for achieving efficient occupational risk analysis and management. The purpose of this study was to measure alpha experimentally using a gravimetric approach in a controlled environment during solvent evaporation tests designed to simulate small spills of solvents. The effects of several factors on α were evaluated. Equations based on regression models derived from the experimental data were proposed for predicting α. Predictions were externally validated against experimental data. A total of 183 tests was performed. Data analyses found that alpha (α) values increased with vapor pressure, spill surface area-to-spill volume ratio, and air speed across the spill. Larger α were associated with petri dish containers compared to watch glasses. Three regression models were created for predicting α. They had four variables in common, namely vapor pressure, molecular weight, air speed above the liquid, and surface tension of the liquid. The fifth variable was either spill volume, spill surface area, or spill surface area-to-spill volume ratio. The R2 of the regression models were equal to 0.98. External validation showed mean relative errors of -32.9, -32.0, and -25.5%, respectively, with associated standard deviations of the relative errors of 17.7, 33.3, and 26.0%, respectively, and associated R2 of 0.92, 0.65, and 0.87, respectively. The proposed equations can be used for estimating α in exposure scenarios similar to those evaluated in this study. Moreover, these models constitute a step further in the improvement of knowledge on estimating evaporation rates for small spills of organic solvents.


Assuntos
Ambiente Controlado , Modelos Teóricos , Fenômenos Físicos , Medição de Risco , Solventes/análise
3.
J Occup Environ Hyg ; 18(2): 51-64, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33412086

RESUMO

The Two-Zone model is used in occupational hygiene to predict both near-field and far-field airborne contaminant concentrations. A literature review was carried out on 21 scientific publications in which the Two-Zone model was used to assess occupational exposure to solvent vapors. Data on exposure scenarios, solvents, generation/emission rates, near- and far-field parameters, and model performance were collected and analyzed. Over the 24 exposure scenarios identified, 18 were evaluated under controlled conditions, 5 under normal workplace activities, and 1 was reported based on literature data. The scenarios involved a variety of tasks which consisted, mostly, of cleaning metal parts, spraying solvents onto surfaces, spilling liquids, and filling containers with volatile substances. Twenty-eight different solvents were modeled and the most commonly tested were benzene, toluene, and acetone. Emission rates were considered constant in 16 scenarios, exponentially decreasing in 6 scenarios, and intermittent in 2 scenarios. Four-hundred-and-forty-six (446) predicted-to-measured concentration ratios were calculated across the 21 studies; 441 were obtained in controlled conditions, 4 under normal workplace activities, and 1 was calculated based on the literature data. For controlled studies, the Two-Zone model predictive performance was within a factor of 0.3-3.7 times the measured concentrations with 93% of the values between 0.5 and 2. The model overestimated the measured concentrations in 63% of the evaluations. The median predicted concentration for the near-field was 1.38 vs. 1.02 for the far-field. Results suggest that the model might be a useful tool for predicting occupational exposure to vapors of solvents by providing a conservative approach. Harmonization in model testing strategies and data presentation is needed in future studies to improve the assessment of the predictability of the Two-Zone model. Moreover, this review has provided a database of exposure scenarios, input parameter values, and model predictive performances which can be useful to occupational hygienists in their future modeling activities.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Modelos Teóricos , Exposição Ocupacional/análise , Solventes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA