Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558007

RESUMO

Quercetin is one of the most powerful bioactive dietary flavonoids. The in vivo biological study of quercetin is extremely difficult due to its very low solubility. However, diorganotin complexes of quercetin are more useful when contrasted with quercetin due to increased solubility. In the present study, quercetin, substituted biguanide synthesized in the form of Schiff base and its di-alkyl/aryl tin (IV) complexes were obtained by condensing Schiff base with respective di-alkyl/aryl tin (IV) dichloride. Advanced analytical techniques were used for structural elucidation. The results of biological screening against Gram-positive/Gram-negative bacteria and fungi showed that these diorganotin (IV) derivatives act as potent antimicrobial agents. The in silico investigation with dihydropteroate (DHPS) disclosed a large ligand-receptor interaction and revealed a strong relationship between the natural exercises and computational molecular docking results.


Assuntos
Complexos de Coordenação , Estanho , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Quercetina/farmacologia , Bases de Schiff/farmacologia , Bases de Schiff/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas
2.
Int J Health Sci (Qassim) ; 16(4): 3-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949692

RESUMO

Objective: Microbial diseases are snowballing at an alarming proportion. Therefore, the intent of this study was to inspect the antimicrobial action of ferrocenyl-substituted pyrazole against various human pathogenic Gram-positive, Gram-negative, and fungal microbial strains. Pyrazoles have been recognized for over a century as a significant and bioactive class of heterocyclic compounds. The association of pyrazoles with a ferrocene moiety may give new class of compounds. The present study was designed to synthesize biological active ferrocenyl-substituted pyrazole through a novel route. Methods: The anhydride of ferrocenyl-substituted pyrazole, namely, (S)-(3-(3-(carboxyamino)-3H-pyrazol-4-yl)cyclopenta-1,3-dien-1-yl)(cyclopenta-1,3-dien-1-yl)iron was synthesized using expansion cyclocondensation. FTIR, NMR, and GC-MS were performed to analyze the structure of the synthesized ferrocenyl-substituted pyrazole. Antimicrobial, DNA photo-cleaving, and anti-angiogenic activities of ferrocenyl-substituted compounds were studied. Results: Anhydride of (S)-(3-(3-(carboxyamino)-3H-pyrazol-4-yl)cyclopenta-1,3-dien-1-yl)(cyclopenta-1,3-dien-1-yl)iron obtained with yield of 87%. Spectral analysis confirmed the formation of anhydride. The synthesized compound was found to be biological active in the range of 85-95 µg/ml. Conclusion: This study described the novel method for the synthesis of biologically active anhydride of ferrocenyl-substituted pyrazole. The study demonstrations that synthesized ferrocenyl-substituted pyrazole in today's situation is the encouraging antimicrobial mediator against the human pathogens. In addition, it may open new doors to initiate research against drug resistance bacteria with possible biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA