RESUMO
Bishydrazone ligand, 2,2'-thiobis(N'-((E)-thiophen-2-ylmethylene) acetohydrazide), H2TTAH and its Zn- complex were prepared and characterized through elemental analysis and various spectroscopic performances as well as (IR, 1H and 13C NMR, mass and (UV-Vis) measurements. The synthesized complex exhibited the molecular formula [Zn2(H2TTAH)(OH)4(C5H5N)3C2H5OH] (Zn-H2TTAH). To assess their potential as anti-corrosion materials, the synthesized particles were assessed for their effectiveness for API 5L X70 C-steel corrosion in a 3.5% NaCl solution using electrochemical methods such as potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS). Additionally, X-ray photoelectron spectroscopy (XPS) was employed to examine the steel surface treated with the tested inhibitors, confirming the establishment of an adsorbed protecting layer. The results obtained from the PP plots indicated that both H2TTAH and Zn-H2TTAH act as mixed-type inhibitors. At a maximum concentration of 1 × 10-4 M, H2TTAH and Zn-H2TTAH exhibited inhibition efficiencies of 93.4% and 96.1%, respectively. The adsorption of these inhibitors on the steel surface followed the Langmuir adsorption isotherm, and it was determined to be chemisorption. DFT calculations were achieved to regulate the electron donation ability of H2TTAH and Zn-H2TTAH molecules. Additionally, Monte Carlo (MC) simulations were conducted to validate the adsorption configurations on the steel surface and gain insight into the corrosion inhibition mechanism facilitated by these molecules.
RESUMO
We observed our newly developed tetrahydro-1,2,4-triazines, including triazene moieties (THTA), namely, 6-((1E)-1-((2E)-(4-(((Z)-1-(2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazin-5-yl) ethylidene) triaz-1-en-1-yl)piperazin-1-yl) triaz-2-en-1-ylidene) ethyl)-2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazine (THTA-I), and 1-((E)-((E)-1-(2,4-diphenyl-2,3,4,5-tetrahydro-1,2,4-triazin-6-yl) ethylidene) triaz-1-en-1-yl) naphthalen-2-ol (THTA-II), as effective inhibitors for the corrosion protection of N80 carbon steel metal in 5% sulfamic acid as the corrosive medium via electrochemical approaches such as potentiodynamic polarization and electrochemical impedance spectroscopy. Furthermore, the tested steel exterior was monitored using X-ray photoelectron spectroscopy after the treatment with the investigated components to verify the establishment of the adsorbed shielding film. The investigated compounds acted as mixed-type inhibitors, as shown by Tafel diagrams. The compounds considered obey the Langmuir adsorption isotherm, and their adsorption on the steel surface was chemisorption. When the tested inhibitors were added, the double-layer capacitances, which can be determined by the adsorption of the tested inhibitors on N80 steel specimens, decreased compared with that of the blank solution. At 10-4 M, the inhibitory efficacy of THTA-I and THTA-II achieved maximum values of 88.5 and 86.5%, respectively. Density-functional theory computations and Monte-Carlo simulation were applied to determine the adsorption attributes and inhibition mechanism through the studied components. Furthermore, the investigated inhibitors were considered to adsorb on the Fe (1 1 0) surface. The adsorption energy was then measured on steel specimens.