RESUMO
Bacterial infection is considered one of the major issues in fish culturing that results in economic losses. Metal nanoparticles are a cutting-edge and effective disease management and preventive strategy because of their antibacterial ability. In this investigation, the selenium nanoparticles were prepared by a biological method using Nelumbo nucifera leaves extract. The in-vitro antibacterial activity of N. nucifera synthesized selenium nanoparticles (NN-SeNPs) was tested against Aeromonas veronii. A treatment assay was conducted on 210 Oreochromis niloticus (average body weight: 27 ± 2.00 g). A preliminary approach was conducted on 90 fish for determination of the therapeutic concentration of NN-SeNPs which was found to be 4 mg/L. Fish (n = 120) were categorized into four groups for 10 days; G1 (control) and G2 (NN-SeNPs) were non-challenged and treated with 0 and 4 mg/L NN-SeNPs, respectively. While, G3 and G4 were infected with 2 × 106 CFU/mL of A. veronii and treated with 0 and 4 mg/L NN-SeNPs, respectively. NN-SeNPs exhibited an inhibition zone against A. veronii with a diameter of 16 ± 1.25 mm. The A. veronii infection increased the hepato-renal biomarkers (alanine and aspartate aminotransferases and creatinine) than the control group. An oxidative stress was the consequence of A. veronii infection (higher malondialdehyde and hydrogen peroxide levels with lower glutathione peroxidase superoxide, dismutase, and catalase activity). A. veronii infection resulted in lower immunological biomarker values (immunoglobulin M, lysozyme, and complement 3) with higher expression of the inflammatory cytokines (interleukin-1ß and tumor necrosis factor-É) as well as lower expression of the anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß). Therapeutic application with 4 mg/L NN-SeNPs prevented the disease progression; and modulated the hepato-renal function disruptions, oxidant-immune dysfunction, as well as the pro/anti-inflammatory cytokines pathway in the A. veronii-infected fish. These findings suggest that NN-SeNPs, employed as a water therapy, can safeguard fish from the harmful effects of A. veronii and serve as a promising antibacterial agent for sustainable aquaculture.
Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Nanopartículas , Nelumbo , Selênio , Animais , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Aeromonas veronii , Citocinas/metabolismo , Dieta , Anti-Inflamatórios/metabolismo , Antibacterianos/metabolismo , Ração Animal/análiseRESUMO
In the aquaculture industry, silica nanoparticles (SiNPs) have great significance, mainly for confronting diseases. Therefore, the present study aims to assess the antibacterial efficiency of SiNPs as a versatile trial against Aeromonas veronii infection in African catfish (Clarias gariepinus). Further, we investigated the influence of SiNPs in palliating the immune-antioxidant stress biochemical, ethological, and histopathological alterations induced by A. veronii. The experiment was conducted for 10 days, and about 120 fish were distributed into four groups at random, with 30 fish each. The first group is a control that was neither exposed to infection nor SiNPs. The second group (SiNPs) was vulnerable to SiNPs at a concentration of 20 mg/L in water. The third group was experimentally infected with A. veronii at a concentration of 1.5 × 107 CFU/mL. The fourth group (A. veronii + SiNPs) was exposed to SiNPs and infected with A. veronii. Results outlined that A. veronii infection induced behavioral alterations and suppression of immune-antioxidant responses that appeared as a clear decline in protein profile indices, complement 3, lysozyme activity, glutathione peroxidase, and total antioxidant capacity. The kidney and liver function biomarkers (creatinine, urea, alkaline phosphatase, and alanine aminotransferase) and lipid peroxide (malondialdehyde) were substantially increased in the A. veronii group, with marked histopathological changes and immunohistochemical alterations in these tissues. Interestingly, the exposure to SiNPs resulted in a clear improvement in all measured biomarkers and a noticeable regeneration of the histopathological changes. Overall, it will establish that SiNPs are a new, successful tool for opposing immunological, antioxidant, physiological, and histopathological alterations induced by A. veronii infection.
Assuntos
Antioxidantes , Peixes-Gato , Animais , Antioxidantes/metabolismo , Aeromonas veronii/metabolismo , Peixes-Gato/metabolismo , Estresse Oxidativo , Terapia de Imunossupressão , Biomarcadores/metabolismoRESUMO
Aeromonas veronii is a pathogenic bacterium associated with various diseases in aquaculture. However, few studies address the antibacterial activity using nanoparticles (NPs). Hence, the current study is innovative to evaluate the antibacterial efficacy of silica nanoparticles (SiNPs) against A. veronii infection in-vitro with a trial for treatment in-vivo. Primarily, we assessed the in-vitro antibacterial activity against A. veronii. Further, we investigated the hematological profile, immune-antioxidant response, and gene expression of African catfish (Clarias gariepinus) in response to SiNPs exposure and the A. veronii challenge. Fish (N = 120; weight: 90 ± 6.19 g) were distributed into four groups (30 fish/group) for a ten-days-treatment trial. The first (control) and second (SiNPs) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively. The third (A. veronii) and fourth (SiNPs + A. veronii) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively, and infected with A. veronii (1.5 × 107 CFU/mL). Results demonstrated that SiNPs displayed an in-vitro antibacterial activity against A. veronii with a 21 mm inhibitory zone. A. veronii infection caused a high mortality rate (56.67%) and substantial reductions in hematological indices and immune indicators [nitric oxide (NO) and immunoglobulin M (IgM)]. Additionally, marked decline in the level of antioxidants [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione content (GSH)] as well as down-regulation in the immune-related genes [interleukins (IL-1ß and IL-8) and tumor necrosis factor-alpha (TNF-α)] and antioxidant-related genes [SOD1, glutathione peroxidase (GPx), and glutathione-S-transferase (GST)] were the consequences of A. veronii infection. Surprisingly, treatment of A. veronii-infected fish with SiNPs lessened the mortality rate, enhanced the blood picture, modulated the immune-antioxidant parameters, and resulted in gene up-regulation. Overall, this study encompasses the significant role of SiNPs, a new versatile tool for combating hematological, immuno-antioxidant alterations, and gene down-regulation induced by A. veronii infection and sustainable aquaculture production.
Assuntos
Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Animais , Antioxidantes/metabolismo , Aeromonas veronii/fisiologia , Regulação para Baixo , Expressão Gênica , Peixes-Gato/genética , Peixes-Gato/metabolismoRESUMO
A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.
Assuntos
Azadirachta , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Ciclídeos/fisiologia , Hidrolisados de Proteína , Streptococcus agalactiae/metabolismo , Azadirachta/metabolismo , Proteínas de Plantas , Desenvolvimento Econômico , Resistência à Doença , Dieta/veterinária , Peso Corporal , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologiaRESUMO
Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1ß, TGF-ß, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.
Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanocompostos , Ocimum basilicum , Albuminas/metabolismo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Quitosana/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Aditivos Alimentares , Expressão Gênica , Glucose/metabolismo , Glutationa Peroxidase/metabolismo , Hormônio do Crescimento , Rim Cefálico/metabolismo , Interleucina-10/metabolismo , Malondialdeído/metabolismo , Muramidase/metabolismo , Óxido Nítrico/metabolismo , Ocimum basilicum/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The current perspective is a pioneer to assess the efficacy of Salvia officinalis leave powder (SOLP) on growth, intestinal enzymes, physiological and antioxidant status, immunological response, and gene expression of Common carp (Cyprinus carpio). We also looked into fish resistance after being challenged with Aeromonas sobria, a pathogenic zoonotic bacteria. Fish (N = 120) were fed four different experimental diets in triplicate for 8 weeks. The control diet (SOLP0 - without SOLP); meanwhile, the other three diets included SOLP of 2, 4, and 8 g kg-1 concentrations (SOLP2, SOLP4, and SOLP8), respectively. Findings demonstrated that fish fed SOLP4 and SOLP8 diets had better growth performance and improved digestion by noticeable enhancing lipase and amylase enzymes activity than other groups. Additionally, the antioxidant (superoxide dismutase and glutathione peroxidase) and immune activities (immunoglobulin M, nitric oxide, and antiprotease) clarified a significant increase (p < 0.05) in SOLP4 and SOLP8 groups. Enriched diets with SOLP4 and SOLP8 exhibited better expression of splenic genes (IL-1ß, IL-6, IL-10, TLR-2, and SOD), intestinal genes (Slc26a6) and (PepT1 or Slc15a1), and muscular genes (IGF-1 and SOD), while MSTN was down-regulated. After 8 weeks of the experimental trial, C. carpio challenged by A. sobria exhibited the highest cumulative mortality (66.67%), while SOLP8-dietary intervention showed the best results in enhancing the fish resistance against A. sobria by lessening mortalities to 13.33% followed by SOLP4 diet (20%). The outcomes indicate that the expression of splenic, muscular, and intestinal genes confirm the efficacy of SOLP on enhancing growth, digestion, and immune-antioxidant status, and recommend the potential use of SOLP especially at 4 g kg-1 level as a valuable natural economic diet additive in C. carpio culture for sustaining aquaculture.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Salvia officinalis , Aeromonas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Infecções por Bactérias Gram-Negativas/veterinária , Salvia officinalis/metabolismo , Superóxido DismutaseRESUMO
The potential of rice protein concentrate (RPC) to substitute fishmeal (FM) protein in the diet of Oreochromis niloticus was assessed in a five-month-long feeding trial. Fishmeal protein was replaced by RPC at rates of 0% (control), 25%, 50%, and 75% (RPC0, RPC25, RPC50, and RPC75, respectively). RPC25 had no significant effect on antioxidant capacity (total antioxidant capacity; superoxide dismutase, catalase, and glutathione peroxidase activities) and immune indices (lysozyme, nitric oxide, antiprotease, and bactericidal activities) after one, two, and five months of feeding, while the values for these parameters were significantly lower in the RPC75 group compared to those in the RPC0 group. The RPC25 group showed higher mRNA levels of the intestinal cytokines IL-1ß, IL-10ß, TGF-ß, and TNF-α than the control group. In fish affected by Aeromonas veronii, the highest significant cumulative mortality was recorded in the RPC75 group, followed by the RPC50, RPC25, and control groups. Gut microbiome analyses showed a reduction in microbial diversity in response to the addition of RPC, regardless of the RPC content, and the composition of the community of the RPC samples differed from that of the control. RPC-enriched diets resulted in higher relative abundances of Bacteroidetes and Fusobacteria in the gut compared to that in the gut of the control fish. In summary, RPC can be used to replace up to 25% of the FM protein in the diet of O. niloticus, while improving the antioxidant capacity, immunocompetence, and disease resistance of the fish.
Assuntos
Ciclídeos , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Oryza , Aeromonas veronii/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Citocinas , Dieta/veterinária , Resistência à DoençaRESUMO
Currently, the intervention of plant by-products in the fish diet has gained tremendous attention owing to the economic and high nutritious value. The current study is a pioneer attempt to incorporate the apricot, Prunus armeniaca kernel powder (PAKP) into the Common carp, Cyprinus carpio diets, and assess its efficacy on growth, digestion, intestinal morphology, immunity, antioxidant capacity, and splenic cytokines expression, besides the antibacterial role against Aeromonas veronii infection. Apparently healthy fish (N = 120) with an initial body weight of 24.76 ± 0.03g were allotted in 12 glass aquaria (60 L) and randomly distributed into four groups (triplicates, 10 fish/aquarium). The control group (PAKP0) was fed a basal diet without additives. The second, third, and fourth groups were provided PAKP diets with various concentrations (2.5 (PAKP2.5), 5 (PAKP5), and 10 g kg-1 (PAKP10)) respectively. After 60 days (feeding trial), sub-samples of the fish (12 fish/group) were intraperitoneally injected with 1 × 107 CFU mL-1 of A. veronii. Results revealed that body weight gain, feed conversion ratio, and specific growth rates were significantly augmented in the PAKP10 group in comparison to the other groups. The dietary inclusion of PAKP at all concentrations boosted the digestive capacity and maintained the intestinal morphology (average villus length, villus width, and goblet cells count) with a marked improvement in PAKP10. Moreover, fish fed on PAKP10 followed by PAKP5 then PAKP2.5 diets had noticeably elevated values of immunological biomarkers (IgM, antiprotease, and lysozyme activity) and antioxidant capabilities (the total antioxidant capacity, superoxide dismutase, and reduced glutathione) as well as significant up-regulation of immune and antioxidant-related genes (TGF-ß2, TLR-2, TNF-α, IL-10, SOD, GPx, and GSS). Fourteen days post-infection with A. veronii, the highest relative percentage survival of fish was observed in PAKP10 (83.33%), followed by PAKP5 (66.67%), and PAKP2.5 (50%). Our results indicated that a dietary intervention with PAKP could promise growth, digestion, immunity, and protect C. carpio against A. veronii infection in a dose-dependent manner. This offers a framework for future application of such seeds as a growth promotor, immune-stimulant, and antioxidant, besides an alternative cheap therapeutic antibacterial agent for sustaining the aquaculture industry.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Prunus armeniaca , Aeromonas veronii , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Peso Corporal , Carpas/metabolismo , Citocinas/genética , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Extratos Vegetais , Prunus armeniaca/metabolismoRESUMO
In this study, the influence of the dietary incorporation of Echinacea purpurea (EP) extract and/or vitamin C on the intestinal histomorphology and some immunological indices were tested in the Nile tilapia (Oreochromis niloticus Linn.). O. niloticus were randomly divided into four groups. The control group G1 was fed on a basal diet, while the G2 and G3 were fed on basal diets, supplemented with EP extract and vitamin C at the doses of 500â¯mgâ¯kg-1 and 400â¯mgâ¯kg-1, respectively. Meanwhile, G4 was fed on a basal diet, supplemented with a mixture of EP extract and vitamin C. After 28 days of feeding, the intestinal tissues were collected for histological observation and immune status, was based on an assay for measuring the phagocytic activity. Furthermore, the expression of the transforming growth factor-beta 1 (TGF-ß1), interleukin-1beta (IL-1ß), and tumor necrosis factor alpha (TNF-α) genes was evaluated in intestine and head kidney. The results revealed that the G4 successfully surpassed the other groups in terms of the heights of intestinal villi, the number of goblet cells and intraepithelial lymphocytes (IELs), and the phagocytic activity, followed by the G3 and G2. The expression of the IL-1ß and TNF-α genes were up regulated only in G4 but in the G3 only the expression of the IL-1ß gene was up regulated. Hence, EP extract along with vitamin C could be used as a feed additive in order to improve the structure of the intestinal mucosal epithelium and immune response in tilapia.
Assuntos
Ácido Ascórbico/farmacologia , Ciclídeos/imunologia , Echinacea/química , Proteínas de Peixes/genética , Fagocitose , Extratos Vegetais/farmacologia , Vitaminas/farmacologia , Ração Animal/análise , Animais , Ciclídeos/genética , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Distribuição AleatóriaRESUMO
Hexaflumuron (HEX) insecticide is widely used in agriculture practices to fight crop insects. The toxicological effect of HEX on Nile tilapia (Oreochromis niloticus) was investigated in this study. Two hundred and forty fish (35.50 ± 1.45 g) were divided into six groups in four replicates (40 fish/group; 10 fish/replicate) and were exposed to six distinct HEX concentrations (0, 2, 4, 6, 8, and 10 mg L-1) for 96-h. The 96-h lethal concentration 50 (96-h LC50) of HEX was calculated to be 7.19 mg L-1. The fish exhibited reduced surface and middle swimming, aggressiveness, and tail-spreading behaviors with increasing bottom swimming and resting patterns after HEX exposure. HEX exposure resulted in body bleeding and fin rot. The erythrogram (red blood cell count, hemoglobin, and packed cell volume %) was significantly reduced with increased mean corpuscular volume by HEX exposure. HEX exposure decreased the white blood cells (WBCs) and differential WBC counts. Acute HEX exposure raised 8-hydroxy-2-deoxyguanosine level while lowering brain acetylcholine esterase activity. HEX exposure caused hepato-renal dysfunction and increased stress-related parameters (glucose and cortisol). Exposure to HEX reduced the immune responses (lysozyme, nitric oxide, immunoglobulin M, and complement 3). A substantial decrease in the antioxidant variables (reduced glutathione content and catalase) with increasing the malondialdehyde was noted by HEX exposure. Moreover, histopathological changes resulted from HEX exposure in the gills, liver, kidney, and spleen. These results indicate that HEX exposure induced behavioral changes, hepato-renal dysfunction, and immune-antioxidant disruption, indicating a possible physiological disruption in O. niloticus.
Assuntos
Ciclídeos , Inseticidas , Animais , Inseticidas/toxicidade , Ciclídeos/imunologia , Ciclídeos/fisiologia , Comportamento Animal/efeitos dos fármacos , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1ß, il-6, il-8, and il-10), transforming growth factor-ß, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.
Assuntos
Capsicum , Ciclídeos , Doenças dos Peixes , Animais , Capsicum/genética , Capsicum/metabolismo , Antioxidantes/metabolismo , Resistência à Doença , Ciclídeos/genética , Imunidade Inata , Suplementos Nutricionais , Dieta/veterinária , Glutationa Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controleRESUMO
This study examined the impact of dietary limonene treatment on the growth performance, immune response, and disease resistance of common carp, Cyprinus carpio. The fish were fed with either a control diet (CTL; no limonene supplementation) or four experimental diets containing 50 (50 L), 100 (100 L), 200 (200 L), and 400 (400 L) mg/kg limonene over a 70-day period, followed by Aeromonas hydrophila challenge. The 200 L treatment resulted in a significant decrease in FCR compared to the CTL treatment. The highest post-challenge mortality was associated with the CTL treatment (62.7%), while the 200 L treatment had the lowest mortality (30.7%). Before the challenge, dietary limonene significantly increased humoral and skin mucosal immune parameters compared to the CTL treatment. The highest leukocyte, lymphocyte counts, skin mucosal protease activity, and intestinal lactic acid bacteria were observed in the 200 L treatment before the challenge. The highest plasma lysozyme activity was observed in the 400 L treatment, whereas the highest skin mucosal lysozyme and peroxidase activities were observed in the 100 L and 200 L treatments before the challenge. There were no significant differences in the blood neutrophil, monocyte, and eosinophil counts, humoral alternative complement activity, skin mucosal alkaline phosphatase activity, and the intestinal total viable bacteria among the treatments before the challenge. After the challenge, the 200 L treatment exhibited the highest leukocyte, neutrophil, and monocyte count, skin mucosal immune parameters, and intestinal lactic acid bacteria, whereas the highest blood eosinophil count was observed in the 100 L, 200 L, and 400 L treatments. At this time, the lowest blood lymphocyte counts were observed in the 100 L and 200 L, but the lowest intestinal total viable bacteria were observed in the 100 L, 200 L, and 400 L treatments. Based on these findings, dietary limonene at 200 mg/kg is ideal for common carp to promote feed efficiency, innate immunity boosting, and resistance against A. hydrophila.
RESUMO
Finding eco-friendly alternatives for antibiotics in treating bacterial diseases affecting the aquaculture sector is essential. Herbal plants are promising alternatives, especially when combined with nanomaterials. Neem (Azadirachta indica) leaves extract was synthesized using a chitosan nanocapsule. Chitosan neem nanocapsule (CNNC) was tested in-vitro and in-vivo against the Aeromonas sobria (A. sobria) challenge in Nile tilapia. A preliminary experiment with 120 Nile tilapia was conducted to determine the therapeutic dose of CNNC, which was established to be 1 mg/L. A treatment study was applied for seven days using 200 fish categorized into four groups (10 fish/replicate: 50 fish/group). The first (control) and second (CNNC) groups were treated with 0 and 1 mg/L CNNC in water without being challenged. The third (A. sobria) and fourth (CNNC + A. sobria) groups were treated with 0 and 1 mg/L CNNC, respectively, and challenged with A. sobria (1 × 107 CFU/mL). Interestingly, CNNC had an in-vitro antibacterial activity against A. sobria; the minimum inhibitory concentration and minimum bactericidal concentration of CNNC against A. sobria were 6.25 and 12.5 mg/mL, respectively. A. sobria challenge caused behavioral alterations, skin hemorrhage, fin rot, and reduced survivability (60%). The infected fish suffered a noticeable elevation in the malondialdehyde level and hepato-renal function markers (aspartate aminotransferase, alanine aminotransferase, and creatinine). Moreover, a clear depletion in the level of the antioxidant and immune indicators (catalase, reduced glutathione, lysozymes, nitric oxide, and complement 3) was obvious in the A. sobria group. Treatment of the A. sobria-challenged fish with 1 mg/L CNNC recovered these parameters and enhanced fish survivability. Overall, CNNC can be used as a new versatile tool at 1 mg/L as a water treatment for combating the A. sobria challenge for sustainable aquaculture production.
RESUMO
Indiscriminate use of insecticides is a major concern due to its ubiquitous occurrence and potential toxicity to aquatic animals. This study investigated the adverse effects of lambda-cyhalothrin (LCT; C23H19ClF3NO3) and methomyl (MTM; C5H10N2O2S) on immune system modulations and growth performance of juvenile fishes. The supportive role of a taurine (TUR; C2H7NO3S)-supplemented diet was also evaluated. Juvenile O. niloticus fishes were exposed to LCT (0.079 µg/L), MTM (20.39 µg/L), or both in water and were fed on a basal diet only or taurine-supplemented basal diet. Exposure to LCT and MTM retarded growth and increased mortality rate. LCT and MTM reduced antioxidant enzyme activities (superoxide dismutase and glutathione peroxidase) and innate and humoral immunity but upregulated interleukin and chemokine expressions. Moreover, exposure to LCT and MTM elevated 8-OHdG levels and increased the mortality of Oreochromis niloticus after the experimental bacterial challenge. The TUR-enriched diet enhanced antioxidant enzymes and acted as a growth promoter and anti-inflammatory agent. TUR can modify innate and adaptive immune responses. Furthermore, TUR supplementation is a beneficial additive candidate for mitigating LCT and MTM toxicities mixed with O. niloticus aquafeed.
RESUMO
Application of herbal immune-stimulants for modulation of fish growth and immune response has received great interest during the past decades. With several pharmacological properties, Doum palm, Hyphaene thebaica (Mart.) is known to be a beneficial medicinal plant. The objective of this study was to investigate the effects of the dietary addition of doum palm fruit powder (DPFP) on growth performance, non-specific immune response, and antioxidant parameters of African catfish, Clarias gariepinus (B.). A total of 120 fish (average initial weight 60.50 ± 0.04 g) were randomly allocated to four groups (three replicates/group, 10 fish/aquarium); a basal diet without DPFP supplementation was used as a control, and three other diets were prepared by supplementing 5, 10, or 15 g kg-1 DPFP for a ten-week feeding period. Following ten weeks of feeding, the fish were challenged with Aeromonas hydrophila (as an immune challenge test), and mortalities were recorded. In comparison to the control diet, dietary DPFP significantly improved growth parameters, including final body weight, body weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER), along with an increase in the content of dry matter of the whole body, in a concentration-dependent manner. Moreover, the heights of intestinal villi, numbers of goblet cells, and intraepithelial lymphocytes (IEL) exhibited marked escalation in all parts of the intestine by increasing the level of DPFP, except for numbers of IEL in the proximal part. The decline in serum glucose, cholesterol, and triglyceride levels was prominent in DPFP10 and DPFP15 groups respective to the DPFP0 group. Furthermore, DPFP boosted the hepatic level of catalase (CAT) in the fish, in a dose-dependent manner; meanwhile, the activity of superoxide dismutase (SOD) and reduced glutathione (GSH) content were also augmented in DPFP10 and DPFP15 groups respective to the DPFP0 group. Dietary DPFP (DPFP15 followed by DPFP10 then DPFP5) led to a pronounced enhancement in the innate immune response (phagocytic percent and index, lysozyme activity, nitric oxide (NO) production, and sialoglycans, namely α 2,3-sialyltransferase and α 2,6-sialyltransferase content); however, the myeloperoxidase (MPO) activity was reduced. Significantly higher relative percentage survival (RPS, 88.56%) of the fish, following the A. hydrophila challenge, was observed for the DPFP15 group. We can suggest that DPFP can beneficially influence fish growth, intestinal histomorphology, hepatic levels of catalase (CAT), superoxide dismutase (SOD) activity and glutathione (GSH) content, immune response, and disease resistance against A. hydrophila challenge.