RESUMO
This study aims to produce amidoxime-modified poly(acrylonitrile-co-acrylic acid) using an optimized method and to investigate the performance of amidoxime-modified poly(acrylonitrile-co-acrylic acid) on the adsorption of boron ions in batch operations. Batch adsorption was conducted at the physiochemical parameters of pH, adsorbent dosage, and initial boron concentration. The isotherms and kinetics of adsorption data were studied at various initial boron concentrations. The renewed synthesis process gave a production yield of 77%, and the conversion of nitrile group to amidoxime was 78%. The adsorption reached its optimum point at pH = 8, adsorbent dosage = 4 g·L-1, and initial adsorbent concentration at 40 ppm. The best model fits for isotherm adsorption was the Sips model with heterogeneity factor (n) = 0.7611. In the kinetic study, the adsorption data fitted best with pseudo-second-order model. The synthesized polymeric adsorbent could be recycled with little decline in its boron entrapment capacities. Hence, amidoxime-modified poly(acrylonitrile-co-acrylic acid) exhibited high adsorption capacity and could be potentially explored as an alternative to commercial resin in the removal of boron from wastewater.
Assuntos
Acrilonitrila , Poluentes Químicos da Água , Purificação da Água , Acrilatos , Boro/análise , Oximas , Poluentes Químicos da Água/análise , Purificação da Água/métodosRESUMO
This study aims to formulate and fabricate the optimum condition of modified kenaf core (MKC) for the removal of targeted endocrine-disrupting compounds in a batch adsorption system. Kenaf core was chemically modified using phosphoric acid as an activating agent, which involved the pyrolysis step. Results indicated a significant difference (p < 0.05) for unmodified and novel modified biochar, observed in characteristic performance analysis via ultimate analysis, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR) spectrum, and Brunauer-Emmett-teller (BET) surface area. The removal percentage of 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2) in individual and binary mixture systems was examined in order to ascertain the highest removal percentage for MKC application in an aqueous solution. The main and interaction effects of three prepared variables such as incorporate of impregnation concentration of an acid catalyst (0.1-1.0 M), particle size (45-1,000 µm), and dosage (1.0-20.0 g/L) were examined and statistically analyzed via design of experiment (DoE) through developed quadratic models. The removal efficiency of E2 and EE2 in an individual system leads to T2KC > T1KC > T3KC, whereas that in the binary mixture system leads to T2KC > T1KC > T3KC and T1KC > T2KC > T3KC for E2 and EE2 adsorption, respectively, through hydrogen bonding and the π-π interaction mechanism. Thus, the findings revealed T2KC at a moderate level of acid concentration (0.5 M H3PO4) to be a potential biochar, with an environmentally safe and sound profile for opposing emerging pollutant issues as well as for the attainment of sustainable development goals.
Assuntos
Disruptores Endócrinos , Hibiscus , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Disruptores Endócrinos/análise , Cinética , Poluentes Químicos da Água/análiseRESUMO
The development of bio-polyol from vegetable oil and its derivatives is gaining much interest from polyurethane industries and academia. In view of this, the availability of methyl oleate derived from palm oil, which is aimed at biodiesel production, provides an excellent feedstock to produce bio-polyol for polyurethane applications. In this recent study, response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) was used to optimise the reaction parameters in order to obtain a maximised hydroxyl value (OHV). Three reaction parameters were selected, namely the mole ratio of epoxidised methyl oleate (EMO) to glycerol (1:5-1:10), the amount of catalyst loading (0.15-0.55%) and reaction temperature (90-150 °C) on a response variable as the hydroxyl value (OHV). The analysis of variance (ANOVA) indicated that the quadratic model was significant at 98% confidence level with (p-value > 0.0001) with an insignificant lack of fit and the regression coefficient (R2) was 0.9897. The optimum reaction conditions established by the predicted model were: 1:10 mole ratio of EMO to glycerol, 0.18% of catalyst and 120 °C reaction temperature, giving a hydroxyl value (OHV) of 306.190 mg KOH/g for the experimental value and 301.248 mg KOH/g for the predicted value. This result proves that the RSM model is capable of forecasting the relevant response. FTIR analysis was employed to monitor the changes of functional group for each synthesis and the confirmation of this finding was analysed by NMR analysis. The viscosity and average molecular weight (MW) were 513.48 mPa and 491 Da, respectively.
Assuntos
Compostos de Epóxi/química , Óleo de Palmeira/química , Polímeros/química , Biocombustíveis , Catálise , Glicerol/química , Poliuretanos/química , TemperaturaRESUMO
Bamboo fibers are utilized for the production of various structures, building materials, etc. and is of great significance all over the world especially in southeast Asia. In this study, the extraction of microcrystalline cellulose (MCC) was performed using bamboo fibers through acid hydrolysis and subsequently different characterizations were carried out using various advanced techniques. Fourier transform infrared (FTIR) spectroscopy analysis has indicated the removal of lignin from MCC extracted from bamboo pulp. Scanning Electron Microscopy (SEM) revealed rough surface and minor agglomeration of the MCC. Pure MCC, albeit with small quantities of impurities and residues, was obtained, as revealed by Energy Dispersive X-ray (EDX) analysis. X-ray diffraction (XRD) indicates the increase in crystallinity from 62.5% to 82.6%. Furthermore, the isolated MCC has slightly higher crystallinity compared to commercial available MCC (74%). The results of thermal gravimetric analysis (TGA) demonstrate better thermal stability of isolated MCC compared to its starting material (Bamboo fibers). Thus, the isolated MCC might be used as a reinforcing element for the production of green composites and it can also be utilized as a starting material for the production of crystalline nanocellulose in future.
Assuntos
Celulose/química , Temperatura Alta , Poaceae/química , Lignina/químicaRESUMO
Methyl ester sulphonates (MES) have been considered as an alternative green surfactant for the detergent market. Investigation on the purification of methyl ester sulphonates (MES) with various carbon chains of C12, C14, C16 and C16-18 derived from palm methyl ester is of great interest. These MES powders have been repeatedly crystallized with ethanol and the purity of MES has increased to a maximum of 99% active content and 96% crystallinity index without changing the structure. These crystallized MES with high active content have 1.0% to 2.3% moisture content and retained its di-salt content in the range of 5%. The crystallized MES C16 and C16-18 attained excellent flow characteristics. Morphology, structural and its crystallinity analyses showed that the crystals MES had good solubility properties, stable crystal structure (ß polymorphic) and triclinic lateral structure when it is in high active content. The brittleness of MES crystals increased from a ß' to a ß subcell. Crystal with high brittleness has the potential to ease production of powder, which leads to a reduction in the cost of production and improves efficiency.
Assuntos
Alcanossulfonatos/análise , Alcanossulfonatos/química , Ésteres/química , Óleo de Palmeira/química , Tensoativos/química , Cristalização , PósRESUMO
Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.
Assuntos
Acrilamidas/química , Azul de Metileno/química , Corantes de Rosanilina/química , Tioureia/química , Poluentes Químicos da Água , Purificação da Água/métodos , Adsorção , Corantes/química , Concentração de Íons de Hidrogênio , Modelos Lineares , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , ÁguaRESUMO
The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).
Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Fenol/química , Piper betle/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estabilidade de Medicamentos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Luz , Compostos Fitoquímicos/química , TemperaturaRESUMO
A low cost, abundant, and renewable vegetable oil source has been gaining increasing attention due to its potential to be chemically modified to polyol and thence to become an alternative replacement for the petroleum-based polyol in polyurethane production. In this study, jatropha oil-based polyol (JOL) was synthesised from non-edible jatropha oil by a two steps process, namely epoxidation and oxirane ring opening. In the first step, the effect of the reaction temperature, the molar ratio of the oil double bond to formic acid, and the reaction time on the oxirane oxygen content (OOC) of the epoxidised jatropha oil (EJO) were investigated. It was found that 4.3% OOC could be achieved with a molar ratio of 1:0.6, a reaction temperature of 60 °C, and 4 h of reaction. Consequently, a series of polyols with hydroxyl numbers in the range of 138-217 mgKOH/g were produced by oxirane ring opening of EJOs, and the physicochemical and rheological properties were studied. Both the EJOs and the JOLs are liquid and have a number average molecular weight (Mn) in the range of 834 to 1457 g/mol and 1349 to 2129 g/mol, respectively. The JOLs exhibited Newtonian behaviour, with a low viscosity of 430-970 mPas. Finally, the JOL with a hydroxyl number of 161 mgKOH/g was further used to synthesise aqueous polyurethane dispersion, and the urethane formation was successfully monitored by Fourier Transform Infrared (FTIR).
Assuntos
Jatropha/química , Óleos de Plantas/química , Polímeros/síntese química , Catálise , Polímeros/química , Poliuretanos/química , TemperaturaRESUMO
Separation materials have received increasing attention given their broad applications in the management of environmental pollution. It is desired to balance the contradiction between high separation efficiency and selectivity of separation materials. The integration of ball-milled bone chars with electrospun membranes might achieve this balance. In this study, electrospun cellulose/chitosan/ball-milled bone char (CL/CS/MB) membranes were by well-dispersing ball-milled bone chars with nanoscale size (98.9-167.5 nm) and developed porosity (40.2-373.1 m2/g) in the electrospinning solvent. The synergistic integration of distributed MBs (5.4-31.5 wt.% of loading hydroxyapatite on the membrane matrix) allowed the efficient sorption of Pb(II) with fast kinetics (20.0 min), excellent capacity (219.9 mg/g at pH 5.0, T 298 K), and favorable selectivity coefficients (2.76-6.79). The formation of minerals was dominant for the selective sorption of Pb(II) by combining the spectral analysis and quantitative determination. The surface complexation with O-/reductive N-species, the cation exchange with inorganic Ca2+, the electrostatic attraction with deprotonated O-, and the cation-π coordination with the aromatic carbon via the π-electrons should be not ignored for the capture of Pb(II). This work demonstrated the feasibility of electrospun CL/CS/MB membranes as a promising candidate for the remediation of aquatic pollutants.
Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Chumbo , Minerais , Água , Cinética , Cátions , Poluentes Químicos da Água/análiseRESUMO
Recently, most of the commercial polyols used in the production of rigid polyurethane foams (RPUFs) have been derived from petrochemicals. Therefore, the introduction of modified palm oil derivatives-based polyol as a renewable material into the formulation of RPUFs is the focus of this study. A palm oil derivative-namely, methyl oleate (MO)-was successfully modified through three steps of reactions: epoxidation reaction, ring-opened with glycerol, followed by amidation reaction to produce a bio-based polyol named alkanolamide polyol. Physicochemical properties of the alkanolamide polyol were analyzed. The hydroxyl value of alkanolamide polyol was 313 mg KOH/g, which is suitable for producing RPUFs. Therefore, RPUFs were produced by replacing petrochemical polyol with alkanolamide polyol. The effects of alkanolamide polyol on the physical, mechanical and thermal properties were evaluated. The results showed that the apparent density and compressive strength increased, and cell size decreased, upon introducing alkanolamide polyol. All the RPUFs exhibited low water absorption and excellent dimensional stability. The RPUFs made with increased amounts of alkanolamide polyol showed higher thermal conductivity. Nevertheless, the thermal conductivities of RPUFs made with alkanolamide polyol are still within the range for thermal insulating materials (<0.1 W/m.K). The thermal stability of RPUFs was improved with the addition of alkanolamide polyol into the system. Thus, the RPUFs made from alkanolamide polyol are potential candidates to be used as insulation for refrigerators or freezers.
RESUMO
Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
RESUMO
Glyphosate (N-phosphonomethyl glycine) is a non-selective, broad-spectrum organophosphate herbicide. Its omnipresent application with large quantity has made glyphosate as a problematic contaminant in water. Therefore, an effective technology is urgently required to remove glyphosate and its metabolites from water. In this study, calcium peroxide nanoparticles (nCPs) were functioned as an oxidant to produce sufficient hydroxyl free radicals (·OH) with the presence of Fe2+ as a catalyst using a Fenton-based system. The nCPs with small particle size (40.88 nm) and high surface area (28.09 m2/g) were successfully synthesized via a co-precipitation method. The synthesized nCPs were characterized using transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller analysis (BET), dynamic light scattering (DLS), and field emission scanning electron microscopy (FESEM) techniques. Under the given conditions (pH = 3.0, initial nCPs dosage = 0.2 g, Ca2+/Fe2+ molar ratio = 6, the initial glyphosate concentration = 50 mg/L, RT), 99.60% total phosphorus (TP) removal and 75.10% chemical oxygen demand (COD) removal were achieved within 75 min. The degradation process fitted with the Behnajady-Modirshahla-Ghanbery (BMG) kinetics model. The H2O2 release performance and proposed degradation pathways were also reported. The results demonstrated that calcium peroxide nanoparticles are an efficient oxidant for glyphosate removal from aqueous systems.
RESUMO
Currently, air quality has become central to global environmental policymaking. As a typical mountain megacity in the Cheng-Yu region, the air pollution in Chongqing is unique and sensitive. This study aims to comprehensively investigate the long-term annual, seasonal, and monthly variation characteristics of six major pollutants and seven meteorological parameters. The emission distribution of major pollutants is also discussed. The relationship between pollutants and the multi-scale meteorological conditions was explored. The results indicate that particulate matter (PM), SO2 and NO2 showed a "U-shaped" variation, while O3 showed an "inverted U-shaped" seasonal variation. Industrial emissions accounted for 81.84%, 58% and 80.10% of the total SO2, NOx and dust pollution emissions, respectively. The correlation between PM2.5 and PM10 was strong (R = 0.98). In addition, PM only showed a significant negative correlation with O3. On the contrary, PM showed a significant positive correlation with other gaseous pollutants (SO2, NO2, CO). O3 is only negatively correlated with relative humidity and atmospheric pressure. These findings provide an accurate and effective countermeasure for the coordinated management of air pollution in Cheng-Yu region and the formulation of the regional carbon peaking roadmap. Furthermore, it can improve the prediction accuracy of air pollution under multi-scale meteorological factors, promote effective emission reduction paths and policies in the region, and provide references for related epidemiological research. Supplementary Information: The online version contains supplementary material available at 10.1007/s11270-023-06279-8.
RESUMO
One of the most significant environmental problems in the world is the massive release of dye wastewater from the dyeing industry. Therefore, the treatment of dyes effluents has received significant attention from researchers in recent years. Calcium peroxide (CP) from the group of alkaline earth metal peroxides acts as an oxidizing agent for the degradation of organic dyes in water. It is known that the commercially available CP has a relatively large particle size, which makes the reaction rate for pollution degradation relatively slow. Therefore, in this study, starch, a non-toxic, biodegradable and biocompatible biopolymer, was used as a stabilizer for synthesizing calcium peroxide nanoparticles (Starch@CPnps). The Starch@CPnps were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), dynamic light scattering (DLS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM). The degradation of organic dyes, methylene blue (MB), using Starch@CPnps as a novel oxidant was studied using three different parameters: initial pH of the MB solution, calcium peroxide initial dosage and contact time. The degradation of the MB dye was carried out via a Fenton reaction, and the degradation efficiency of Starch@CPnps was successfully achieved up to 99%. This study shows that the potential application of starch as a stabilizer can reduce the size of the nanoparticles as it prevents the agglomeration of the nanoparticles during synthesis.
RESUMO
Persistent endocrine-disrupting compounds (EDCs) in bodies of water are a concern for human health and constitute an environmental issue, even if present in trace amounts. Conventional treatment systems do not entirely remove EDCs from discharge effluent. Due to the ultra-trace level of EDCs which affect human health and pose an environmental issue, developing new approaches and techniques to remove these micropollutants from the discharged effluent is vital. This review discusses the most common methods of eliminating EDCs through preliminary, primary, secondary and tertiary treatments. The adsorption process is favoured for EDC removal, as it is an economical and straightforward option. The NABC aspects, which are the need, approach, benefits and challenges, were analysed based on existing circumstances, highlighting biochar as a green and renewable adsorbent for the removal of organic contaminants. From the environmental point of view, the effectiveness of this method, which uses natural fibre from the kenaf plant as a porous and economical biochar material with a selected lignocellulosic biomass, provides insights into the advantages of biochar-derived adsorbents. Essentially, the improvement of the natural fibre as an adsorbent is a focus, using carbonisation, activation, and the physiochemical process to enhance the adsorption ability of the material for pollutants in bodies of water. This output will complement sustainable water management approaches presented in previous studies for combating the emerging pollutant crisis via novel green and environmentally safe options.
Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Disruptores Endócrinos/análise , Humanos , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
The development of antimicrobial packaging has been growing rapidly due to an increase in awareness and demands for sustainable active packaging that could preserve the quality and prolong the shelf life of foods and products. The addition of highly efficient antibacterial nanoparticles, antifungals, and antioxidants to biodegradable and environmentally friendly green polymers has become a significant advancement trend for the packaging evolution. Impregnation of antimicrobial agents into the packaging film is essential for impeding or destroying the pathogenic microorganisms causing food illness and deterioration. Higher safety and quality as well as an extended shelf life of sustainable active packaging desired by the industry are further enhanced by applying the different types of antimicrobial packaging systems. Antimicrobial packaging not only can offer a wide range of advantages, but also preserves the environment through usage of renewable and biodegradable polymers instead of common synthetic polymers, thus reducing plastic pollution generated by humankind. This review intended to provide a summary of current trends and applications of antimicrobial, biodegradable films in the packaging industry as well as the innovation of nanotechnology to increase efficiency of novel, bio-based packaging systems.
RESUMO
The utilization of vegetable oil in the production of polymeric material has gained interest due to its proven ability to replace nonrenewable petroleum sources, as it is readily modified via chemical reaction to produce polyol and subsequently for polyurethane production. Jatropha oil (JO), a second-generation feedstock, is one of the suitable candidates for polyester polyol synthesis because it contains a high percentage of unsaturated fatty acids. In this study, jatropha-based polyester polyols (JOLs) with different hydroxyl values were successfully synthesized via a two-step method: epoxidation followed by oxirane ring-opening reaction. Ring-opening reagents; methanol, ethanol, and isopropanol were used to produce polyol with hydroxyl number of 166, 180, and 189 mg/KOH, respectively. All the synthesized JOLs exhibited a Newtonian to shear thinning behavior in the measured shear rate ranges from 10 to 1000 s-1 at 25 °C. The viscosity of a JOL ring-opened with methanol, isopropanol, and ethanol was 202, 213, and 666 mPa·s, respectively, at 20 °C and 100 s-1, which is within the range of commercially available polyols. Successively, the JOLs were reacted with isophorone diisocyanate (IPDI) to produce polyurethane prepolymer by utilizing 2,2-dimethylol propionic acid (DMPA) as an emulsifier. The prepolymer was then dispersed in water to produce a waterborne polyurethane dispersion. Colloidal stability of the jatropha-based polyurethane dispersions (JPUDs) were investigated by particle size analysis. A JPUD with a small particle size in the range of 6.39 to 43.83 nm was obtained, and the trend was associated with the soft segment of the polyol in the formulation. The zeta potentials of the JPUs ranged from -47.01 to -88.9 mV, indicating that all synthesized JPUs had high dispersity and stability. The efficient synthesis procedure, low cost, and excellent properties of the resulting product are thought to offer an opportunity to use jatropha oil as a sustainable resource for polyester polyol preparation.
RESUMO
The depletion of petroleum-based resources and the adverse environmental problems, such as pollution, have stimulated considerable interest in the development of environmentally sustainable materials, which are composed of natural fiber-reinforced polymer composites. These materials could be tailored for a broad range of sustainable industrial applications with new surface functionalities. However, there are several challenges and drawbacks, such as composites processing production and fiber/matrix adhesion, that need to be addressed and overcome. This review could provide an overview of the technological challenges, processing techniques, characterization, properties, and potential applications of NFRPC for sustainable industrial applications. Interestingly, a roadmap for NFRPC to move into Industry 4.0 was highlighted in this review.
RESUMO
Jatropha oil-based polyol (JOL) was prepared from crude Jatropha oil via an epoxidation and hydroxylation reaction. During the isocyanation step, two different types of diisocyanates; 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI), were introduced to produce Jatropha oil-based polyurethane acrylates (JPUA). The products were named JPUA-TDI and JPUA-IPDI, respectively. The success of the stepwise reactions of the resins was confirmed using 1H nuclear magnetic resonance (NMR) spectroscopy to support the Fourier-transform infrared (FTIR) spectroscopy analysis that was reported in the previous study. For JPUA-TDI, the presence of a signal at 7.94 ppm evidenced the possible side reactions between urethane linkages with secondary amine that resulted in an aryl-urea group (Ar-NH-COO-). Meanwhile, the peak of 2.89 ppm was assigned to the α-position of methylene to the carbamate (-CH2NHCOO) group in the JPUA-IPDI. From the rheological study, JO and JPUA-IPDI in pure form were classified as Newtonian fluids, while JPUA-TDI showed non-Newtonian behaviour with pseudoplastic or shear thinning behaviour at room temperature. At elevated temperatures, the JO, JPUA-IPDI mixture and JPUA-TDI mixture exhibited reductions in viscosity and shear stress as the shear rate increased. The JO and JPUA-IPDI mixture maintained Newtonian fluid behaviour at all temperature ranges. Meanwhile, the JPUA-TDI mixture showed shear thickening at 25 °C and shear thinning at 40 °C, 60 °C and 80 °C. The master curve graph based on the shear rate for the JO, JPUA-TDI mixture and JPUA-IPDI mixture at 25 °C, 40 °C, 60 °C and 80 °C was developed as a fluid behaviour reference for future storage and processing conditions during the encapsulation process. The encapsulation process can be conducted to fabricate a self-healing coating based on a microcapsule triggered either by air or ultra-violet (UV) radiation.
RESUMO
In this work, to fabricate a novel composite consisting of chitosan/poly-lactic acid doped with graphene oxide (CS/PLA-GO), composites were prepared via solution blending method to create various compositions of CS and PLA (90/10, 70/30 and 50/50CS/PLA-GO). Graphene oxide (GO) was added into a PLA solution prior to blending it with chitosan (CS). The surface morphology and structural properties of synthesized composites were characterized using FT-IR, SEM and XRD analysis. The performances of synthesized composites on thermal strength, mechanical strength, water absorption, and microbial activity were also evaluated through standard testing methods. The morphology of 70/30CS/PLA-GO became smoother with the addition of GO due to enhanced interfacial adhesion between CS, PLA and GO. The presence of GO has also improved the miscibility of CS and PLA and has superior properties compared to CS/PLA composites. Moreover, the addition of GO has boosted the thermal stability of the composite, with a significant enhancement of Td and Tg. The highest Td and Tg were accomplished at 389 °C and 76.88 °C, respectively, for the 70/30CS/PLA-GO composite in comparison to the CS and PLA that recorded Td at 272 °C and 325 °C and Tg at 61 °C and 60 °C, respectively. In addition, as reinforcement, GO provided a significant influence on the tensile strength of composites where the tensile modulus showed remarkable improvement compared to pure CS and CS/PLA composites. Furthermore, CS/PLA-GO composites showed excellent water-barrier properties. Among other compositions, 70/30CS/PLA revealed the greatest decrement in water absorption. From the antibacterial results, it was observed that 90/10CS/PLA-GO and 70/30CS/PLA-GO showed an inhibitory effect and had wide inhibition zones which were 8.0 and 8.5 mm, respectively, against bacteria Bacillus Subtillis B29.