Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(7): 288, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834761

RESUMO

Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.


Assuntos
Antibacterianos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Osteomielite/microbiologia , Osteomielite/tratamento farmacológico , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Animais
2.
PLoS One ; 15(4): e0231276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275737

RESUMO

OBJECTIVES: Alloyed metallic nanoparticles of silver and copper are effective against intracellular infection. However, systemic toxicity may arise due to the non-specific delivery of the nanoparticles. In addressing the issue, this study deals with the targeting of silver-copper-boron (ACB) nanoparticles to infected osteoblasts, which could decrease systemic toxicity and form the basis of targeting specific markers expressed in bone infections. METHODS: ACB nanoparticles were synthesized and conjugated to the Cadherin-11 antibody (OBAb). The effect of targeting nanoparticles against extracellular and intracellular S. aureus was determined by enumeration of bacterial growth. The binding of the targeting nanoparticles to infected osteoblasts as well as the visualization of live/dead bacteria due to treatment was carried out using fluorescence microscopy. MTT assay was used to determine the viability of osteoblasts with different concentrations of the nanoparticles. RESULTS: The ACB nanoparticles conjugated to OBAb (ACB-OBAb) were effective against extracellular S. aureus. The ACB-OBAb nanoparticles showed a 1.32 log reduction of intracellular S. aureus at a concentration of 1mg/L. The ACB-OBAb nanoparticles were able to bind to the infected osteoblast and showed toxicity to osteoblasts at levels ≥20mg/L. Also, the percentage of silver, copper, and boron in the nanoparticles determined the effectiveness of their antibacterial activity. CONCLUSION: The ACB-OBAb nanoparticles were able to target the osteoblasts and demonstrated significant antibacterial activity against intracellular S. aureus. Targeting shows promise as a strategy to target specific markers expressed on infected osteoblasts for efficient nanoparticle delivery, and further animal studies are recommended to test its efficacy in vivo.


Assuntos
Ligas/farmacologia , Osso e Ossos/citologia , Boro/farmacologia , Cobre/farmacologia , Espaço Intracelular/microbiologia , Nanopartículas Metálicas/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Caderinas/imunologia , Linhagem Celular , Endocitose/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Osteoblastos/efeitos dos fármacos , Osteoblastos/microbiologia
3.
Sci Rep ; 10(1): 16013, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994532

RESUMO

In this study, we report on the electrical properties of multi-wall carbon nanotubes (MWCNT) composites functionalized with metal or metal alloy oxides and embedded in a polyurethane matrix to develop a lightweight material for microwave absorption and shielding. The CNT nanoparticles are functionalized with metallic oxides such as Cobalt oxide, Iron oxide, and Cobalt Iron oxide, at three different concentrations. Metallic oxides are used at 5%, 10%, and 20% concentration of the total CNT percentage weight. The resulting functionalized CNT is mixed with polyurethane polymer at 5% wt of the total composite weight. Three sets of cylindrical samples are developed, and each set contains three different metal oxide concentrations. The dielectric properties of the nine developed samples are obtained by measuring their permittivity spectra using an open-ended coaxial probe technique in the spectral range 5-50 GHz. The absorption efficiency of the composites is then obtained by calculating the reflection loss at normal incidence. The results show that the spectral range of absorption can be tuned by changing the CNT concentration, and the material thickness. Functionalized CNT with different alloyed metal oxides enhanced the absorption efficiency of the polyurethane/CNT composites. Such functionalized composites can be used to replace the common heavyweight materials used for microwave applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA