Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Hum Reprod ; 25(12): 811-824, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778538

RESUMO

In human placenta, alteration in trophoblast differentiation has a major impact on placental maintenance and integrity. However, little is known about the mechanisms that control cytotrophoblast fusion. The BeWo cell line is used to study placental function, since it forms syncytium and secretes hormones after treatment with cAMP or forskolin. In contrast, the JEG-3 cell line fails to undergo substantial fusion. Therefore, BeWo and JEG-3 cells were used to identify a set of genes responsible for trophoblast fusion. Cells were treated with forskolin for 48 h to induce fusion. RNA was extracted, hybridised to Affymetrix HuGene ST1.0 arrays and analysed using system biology. Trophoblast differentiation was evaluated by real-time PCR and immunocytochemistry analysis. Moreover, some of the identified genes were validated by real-time PCR and their functional capacity was demonstrated by western blot using phospho-specific antibodies and CRISPR/cas9 knockdown experiments. Our results identified a list of 32 altered genes in fused BeWo cells compared to JEG-3 cells after forskolin treatment. Among these genes, four were validated by RT-PCR, including salt-inducible kinase 1 (SIK1) gene which is specifically upregulated in BeWo cells upon fusion and activated after 2 min with forskolin. Moreover, silencing of SIK1 completely abolished the fusion. Finally, SIK1 was shown to be at the center of many biological and functional processes, suggesting that it might play a role in trophoblast differentiation. In conclusion, this study identified new target genes implicated in trophoblast fusion. More studies are required to investigate the role of these genes in some placental pathology.


Assuntos
Comunicação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Placenta/metabolismo , Proteínas Serina-Treonina Quinases/genética , Trofoblastos/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular/fisiologia , Fusão Celular , Linhagem Celular Tumoral , Colforsina/farmacologia , Feminino , Humanos , Placenta/citologia , Gravidez
2.
J Biol Regul Homeost Agents ; 27(3): 693-703, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24152838

RESUMO

Diabetic nephropathy (DN) is one of the most serious complications of type I and type II diabetes. DN is characterized by hyperfiltration, hypertrophy, extracellular matrix accumulation, and proteinuria. This advances into renal fibrosis and loss of renal function. Reactive oxygen species (ROS) and TGF-beta have been implicated in the pathogenesis of diabetic nephropathy. Early stages of diabetic nephropathy are also associated with alterations in renal sodium handling as well as hypertension; both are processes linked by involvement of the arachidonic acid (AA) metabolites, 20-hydroxyeicosatetraenoic acid (20-HETE, produced by cytochrome P450-4a, (CYP4A) and epoxyeicosatrienoic acids (EETs). Indeed, metabolism of AA is increased in a rat model of diabetes. In this study, we demonstrate that rats with streptozotocin-induced diabetes of 1 month duration develop renal hypertrophy and increased fibronectin and TGF-beta1 expression/cortical levels concomitant with an increase in CYP4A expression and 20 HETE production. These results were also paralleled by an increase in reactive oxygen species (ROS) production and NADPH oxidase activity. Treatment of diabetic rats with HET0016, selective inhibitor of CYP 4A, prevented all these changes. Our results suggest that diabetes-induced induction of CYP4A and 20-HETE production could be a major pathophysiological mechanism leading to activation of ROS through an NADPH dependent pathway and TGF-beta1 thus resulting in major renal pathology. Inhibitors of 20-HETE production could thus have an important therapeutic potential in the treatment of diabetic nephropathy.


Assuntos
Citocromo P-450 CYP4A/fisiologia , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Ácidos Hidroxieicosatetraenoicos/fisiologia , Rim/enzimologia , Animais , Rim/patologia , Masculino , NADPH Oxidases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina , Fator de Crescimento Transformador beta1/biossíntese
3.
Int J Endocrinol ; 2015: 534320, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064110

RESUMO

Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system.

4.
Oncogene ; 32(3): 296-306, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22370643

RESUMO

Epithelial-mesenchymal transition (EMT) is a developmental program of signaling pathways that determine commitment to epithelial and mesenchymal phenotypes. In the prostate, EMT processes have been implicated in benign prostatic hyperplasia and prostate cancer progression. In a model of Pten- and TP53-null prostate adenocarcinoma that progresses via transforming growth factor ß-induced EMT, mesenchymal transformation is characterized by plasticity, leading to various mesenchymal lineages and the production of bone. Here we show that SLUG is a major regulator of mesenchymal differentiation. As microRNAs (miRs) are pleiotropic regulators of differentiation and tumorigenesis, we evaluated miR expression associated with tumorigenesis and EMT. Mir-1 and miR-200 were reduced with progression of prostate adenocarcinoma, and we identify Slug as one of the phylogenetically conserved targets of these miRs. We demonstrate that SLUG is a direct repressor of miR-1 and miR-200 transcription. Thus, SLUG and miR-1/miR-200 act in a self-reinforcing regulatory loop, leading to amplification of EMT. Depletion of Slug inhibited EMT during tumorigenesis, whereas forced expression of miR-1 or miR-200 inhibited both EMT and tumorigenesis in human and mouse model systems. Various miR targets were analyzed, and our findings suggest that miR-1 has roles in regulating EMT and mesenchymal differentiation through Slug and functions in tumor-suppressive programs by regulating additional targets.


Assuntos
Adenocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , PTEN Fosfo-Hidrolase/deficiência , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Fatores de Transcrição da Família Snail , Fator de Crescimento Transformador beta/farmacologia , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA