Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 96(8): 815-822, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29947552

RESUMO

The prelimbic cortex (PrL) as a part of the medial prefrontal cortex (mPFC) plays a crucial role in drug addiction. Previous studies have shown that glutamatergic transmission through the NMDA and AMPA receptors plays an important role in morphine rewarding properties. In this study, we evaluated the effect of glutamate receptors blockade within the PrL on morphine self-administration. Male Wistar rats were randomly selected and divided into 7 groups. Trained rats were placed in self-administration apparatus, where they pressed an active lever for receiving morphine (5 mg/mL) in test groups and saline in saline group during 11 consecutive days for 2 h per session. The effects of intra-prelimbic AMPA receptor antagonist (CNQX; 0.5 and 2.5 µg/0.5 µL) and the NMDA antagonist (AP5; 0.1 and 1 µg/0.5 µL) on self-administration were tested. Our results demonstrated that intra-prelimbic injection of different doses of CNQX and AP5, and co-administration of these 2 drugs before self-administration significantly decreased active lever pressing compared with morphine group (p < 0.001). Also, the number of self-infusion significantly decreased in test groups compared with morphine group (p < 0.001). These findings suggest that a reduction in PrL glutamatergic output can modulate morphine reinforcement.


Assuntos
Morfina/efeitos adversos , Receptores de Glutamato/metabolismo , Reforço Psicológico , Animais , Sistema Límbico , Masculino , Morfina/administração & dosagem , Ratos Wistar
2.
Adv Biomed Res ; 7: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211129

RESUMO

BACKGROUND: The attitude of research on addiction has been done on the key role of glutamate. As a regard, the prelimbic cortex (PrL) has an important role in addiction, learning, and memory. We tried to investigate the level of glutamate and aspartate concentration after glutamate receptors blockade in this region in the morphine-addicted rats. MATERIALS AND METHODS: In this study, we examined the effects of local infusion of the N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonists, 2-amino-5-phosphonovaleric acid (AP5), and 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), into the PrL cortex on the level of excitatory amino acids (EAAs) and glycine. After 11 days of self-administration, the prelimbic area of the brain was taken out, and the EAAs and glycine concentration was measured by high-performance liquid chromatography. RESULTS: Morphine resulted in the significant increase in the EAAs concentration within this area (P ≤ 0.001). Microinjection of AP5 into this region before using of morphine significantly decreased the morphine-induced glutamate and aspartate concentration (P ≤ 0.001). CNQX had the same effect and significantly reduced the EAAs concentration compared to the morphine group (P ≤ 0.001). In addition, microinjection of AP5 and CNQX simultaneously increased glycine concentration (P ≤ 0.001). CONCLUSIONS: These results show that morphine stimulates the EAAs release in the prelimbic area. It seems that microinjection of AP5 or CNQX in this region is effective in reducing morphine-induced EAA. It is suggested that EAA transmission in the PrL cortex may be a possible target for treatment of morphine addiction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA