Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Divers ; 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39425859

RESUMO

Proteolysis Targeting Chimeras are part of targeted protein degradation (TPD) techniques, which are significant for pharmacological and therapy development. Small-molecule interaction with the targeted protein is a complicated endeavor and a challenge to predict the proteins accurately. This study used machine learning algorithms and molecular fingerprinting techniques to build an AI-powered PROTAC Activity Prediction Tool that could predict PROTAC activity by examining chemical structures. The chemical structures of a diverse set of PROTAC drugs and their corresponding activities are selected as a dataset for training the tool. The processes used in this study included data preparation, feature extraction, and model training. Further, evaluation was done for the performance of the various classifiers, such as AdaBoost, Support Vector Machine, Random Forest, Gradient Boosting, and Multi-Layer Perceptron. The findings show that the methods selected here depict accurate PROTAC activities. All the models in this study showed an ROC curve better than 0.9, while the random forest on the test set of the AI-DPAPT had an area under the curve score of 0.97, thus showing accurate results. Furthermore, the study revealed significant insights into the molecular features that can influence the functions of the PROTAC. These findings can potentially increase the understanding of the structure-activity correlations involved in the TPD. Overall, the investigation contributes to computational drug development by introducing this platform powered by artificial intelligence that predicts the function of PROTAC. In addition, it sped up the processes of identifying and improving previously unknown medications. The AI-DPAPT platform can be accessed online using a web server at https://ai-protac.streamlit.app/ .

2.
Mol Divers ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856834

RESUMO

Hepatitis C Virus (HCV) is a significant health concern affecting a large portion of the global population and is a major cause of acute liver diseases, including cirrhosis. The variability in the HCV genome mainly results from the rapid replication facilitated by the NS5B polymerase, making it a prime target for anti-HCV drug development. This study explores potential compounds from marine bacteria that could inhibit the HCV NS5B polymerase by virtual screening, analyzing the energetics, and dynamic behavior of target-compound complexes. Virtual screening with the Lipinski filter was employed to select compounds from the marine bacteria database that demonstrated strong binding affinity to NS5B. The top four (CMNPD27216, CMNPD21066, CMNPD21065, and CMNPD27283) compounds, ranked by their re-docking scores, underwent additional evaluation. Molecular dynamics simulations for 200 ns were conducted to assess the dynamic stability of these complexes in a solvent environment. Furthermore, methods such as MM-GBSA, PCA, and free energy landscape analysis were used to analyze the system's energetics and identify stable conformations by locating transition states. The findings suggest that these compounds exhibit promising binding capabilities to HCV polymerase and could be considered for future experimental validation.

3.
Mol Divers ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702561

RESUMO

The increasing spread of the Monkeypox virus (MPXV) presents a significant public health challenge, emphasising the urgent requirement for effective treatments. Our study focuses on the VP39 Methyltransferase enzyme of MPXV as a critical target for therapy. By utilising virtual screening, we investigated natural compounds with structural similarities to sinefungin, a broad-acting MTase inhibitor. From an initial set of 177 compounds, we identified three promising compounds-CNP0346326, CNP0343532, and CNP008361, whose binding scores were notably close to that of sinefungin. These candidates bonded strongly to the VP39 enzyme, hinting at a notable potential to impede the virus. Our rigorous computational assays, including re-docking, extended molecular dynamics simulations, and energetics analyses, validate the robustness of these interactions. The data paint a promising picture of these natural compounds as front-runners in the ongoing race to develop MPXV therapeutics and set the stage for subsequent empirical trials to refine these discoveries into actionable medical interventions.

4.
Chem Biodivers ; 21(8): e202400701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829745

RESUMO

Breast cancer remains a major global health issue, particularly affecting women and contributing significantly to mortality rates. Current treatments for estrogen receptor-positive breast cancers, such as aromatase inhibitors, are effective but often come with side effects and resistance issues. This study addresses these gaps by targeting aromatase, an enzyme crucial for estrogen synthesis, which plays a pivotal role in breast cancer progression. The innovative approach involves synthesizing novel bis-triazolopyridopyrimidines, designed to leverage the combined pharmacological benefits of pyridopyrimidine and 1,2,4-triazole structures, known for their potent aromatase inhibition and anti-cancer properties. These compounds were synthesized and characterized using 1H-NMR, 13C-NMR, and MS spectral analyses, and their anticancer efficacy was evaluated through MTT assays against MCF-7 breast cancer cell lines in vitro. Molecular docking analyses revealed strong binding energies with aromatase, particularly for compounds 5 b, 5 c, 10 a, and 10 b, indicating their potential as effective aromatase inhibitors. The study highlights these compounds as promising candidates for further development as therapeutic agents against breast cancer.


Assuntos
Antineoplásicos , Inibidores da Aromatase , Aromatase , Curcumina , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Pirimidinas , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Aromatase/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Células MCF-7 , Curcumina/farmacologia , Curcumina/química , Curcumina/síntese química , Curcumina/análogos & derivados , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
5.
Curr Issues Mol Biol ; 45(2): 1422-1442, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36826038

RESUMO

Many biological activities of pyridine and thiazole derivatives have been reported, including antiviral activity and, more recently, as COVID-19 inhibitors. Thus, in this paper, we designed, synthesized, and characterized a novel series of N-aminothiazole-hydrazineethyl-pyridines, beginning with a N'-(1-(pyridine-3-yl)ethylidene)hydrazinecarbothiohydrazide derivative and various hydrazonoyl chlorides and phenacyl bromides. Their Schiff bases were prepared from the condensation of N-aminothiazole derivatives with 4-methoxybenzaldehyde. FTIR, MS, NMR, and elemental studies were used to identify new products. The binding energy for non-bonding interactions between the ligand (studied compounds) and receptor was determined using molecular docking against the SARS-CoV-2 main protease (PDB code: 6LU7). Finally, the best docked pose with highest binding energy (8a = -8.6 kcal/mol) was selected for further molecular dynamics (MD) simulation studies to verify the outcomes and comprehend the thermodynamic properties of the binding. Through additional in vitro and in vivo research on the newly synthesized chemicals, it is envisaged that the achieved results will represent a significant advancement in the fight against COVID-19.

6.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 150-155, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571884

RESUMO

A concoction of unhealthy eating, inactivity, and the adverse effects of specific drugs brings on obesity. The primary cause of Obesity is the storage of too much energy and triglycerides in adipocytes, particularly white adipose tissue (WAT). In addition to modifying one's lifestyle, anti-obesity medicines are increasingly used as adjuvant therapy. Flavonoids are the major class of compounds having significant biological impacts and health-improving properties. To find novel flavonoid compounds that fight obesity using computational drug design techniques. This work targets 1DI protein to predict new flavonoid compounds that fight obesity. The study uses computational approaches to anticipate potential anti-obesity/inflammatory flavonoid compounds against obesity to prevent WAT differentiation by targeting ID-1, a DNA-binding protein inhibitor. Our study led to the identification of the protein target inhibitor lead CID: 5280443, which was found to be a potent inhibitor of the receptor. According to the findings of this study, this bio-active molecule may be used as a lead for the development of drugs that preferentially fight obesity without interfering with the functions of the human proteasome. The scientific community will benefit from these discoveries, which could aid in the creation of new medications that treat obesity more successfully.


Assuntos
Fármacos Antiobesidade , Proteínas de Ligação a DNA , Humanos , Proteínas de Ligação a DNA/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Adipócitos , Tecido Adiposo Marrom/metabolismo
7.
Pharmacology ; 108(6): 504-520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37748454

RESUMO

BACKGROUND: The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY: To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES: The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Nanomedicina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Inflamação/tratamento farmacológico
8.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768593

RESUMO

Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-ß-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.


Assuntos
Ficus , Animais , Masculino , Camundongos , Ácido Acético/uso terapêutico , Analgésicos/uso terapêutico , Ficus/química , Dor/tratamento farmacológico , Dor/induzido quimicamente , Extratos Vegetais/química , Ácidos Pentanoicos/química
9.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234908

RESUMO

Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activities, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other anticipated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl halides 3a-h, α-haloketones 5a-d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate 7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a-h, 3-phenyl-4-arylthiazoles 6a-d and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthesized products were confirmed by spectral data. All of the compounds also showed remarkable anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepatocellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition. 1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both cancer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug (IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the above thiadiazole derivatives, molecular docking studies were performed that established a binding site with EGFR TK.


Assuntos
Antineoplásicos , Tiadiazóis , Anticonvulsivantes , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Harmina , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Feniltioureia , Piridinas/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/química , Tiazóis/química
10.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500484

RESUMO

Organic dyes with enduring colors which are malodorous are a significant source of environmental deterioration due to their virulent effects on aquatic life and lethal carcinogenic effects on living organisms. In this study, the adsorption of methyl green (MG), a cationic dye, was achieved by using ZIF-67, which has been deemed an effective adsorbent for the removal of contaminants from wastewater. The characterization of ZIF-67 was done by FTIR, XRD, and SEM analysis. The adsorption mechanism and characteristics were investigated with the help of control batch experiments and theoretical studies. The systematical kinetic studies and isotherms were sanctioned with a pseudo-second-order model and a Langmuir model (R2 = 0.9951), confirming the chemisorption and monolayer interaction process, respectively. The maximum removal capacities of ZIF-67 for MG was 96% at pH = 11 and T = 25 °C. DFT calculations were done to predict the active sites in MG by molecular electrostatic potential (MEP). Furthermore, both Molecular dynamics and Monte Carlo simulations were also used to study the adsorption mechanism.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Verde de Metila , Cinética , Poluentes Químicos da Água/química , Água/química , Adsorção , Modelos Moleculares
11.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299535

RESUMO

Pyridazine and thiazole derivatives have various biological activities such as antimicrobial, analgesic, anticancer, anticonvulsant, antitubercular and other anticipated biological properties. Chitosan can be used as heterogeneous phase transfer basic biocatalyst in heterocyclic syntheses. Novel 1-thiazolyl-pyridazinedione derivatives were prepared via multicomponent synthesis under microwave irradiation as ecofriendly energy source and using the eco-friendly naturally occurring chitosan basic catalyst with high/efficient yields and short reaction time. All the prepared compounds were fully characterized by spectroscopic methods, and their in vitro biological activities were investigated. The obtained results were compared with those of standard antibacterial/antifungal agents. DFT calculations and molecular docking studies were used to investigate the electronic properties and molecular interactions with specific microbial receptors.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Piridazinas/síntese química , Tiazóis/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Técnicas de Química Combinatória , Farmacorresistência Bacteriana , Fungos/efeitos dos fármacos , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Micoses/tratamento farmacológico , Piridazinas/química , Piridazinas/farmacologia , Tiazóis/química , Tiazóis/farmacologia
12.
Sci Rep ; 14(1): 1876, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253619

RESUMO

Plant extracts have been useful for oral health or dentistry. However, only a few evidence-based justifications exist. This study evaluated Multidentia crassa (Hiern) Bridson & Verdc, one of the oral health-used plants in Malawi. Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) identified the extracts' compounds. The pharmacokinetics of the identified compounds were studied using pkCSM and SwissADME, and molecular docking studies were used to identify potential drug candidates for oral health by predicting the binding affinity of the compounds to cyclooxygenases, interleukin-1 beta receptors, odontoblast cold sensor proteins, and purinergic receptor P2X3. FT-IR analysis showed characteristic peaks of phenols, carboxylic acids, alkenes, alkyl halides, amines, esters, ethers, aromatics, and lipids. GC-MS results showed the presence of 58 bioactive phytocompounds, some of which have various pharmacological activities relevant to oral health. Molecular docking further validated stigmastan-3,5-diene's potency for analgesic and anti-inflammatory purposes. Based on a literature review, this is the first report on the bioactive compounds of M. crassa extracts showing analgesic and anti-inflammatory effects. This study's results can lead to new herbal and conventional medicines. Therefore, we recommend in vivo and in vitro studies to elucidate the pharmacological effects of the plant extracts.


Assuntos
Analgésicos , Rubiaceae , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Odontologia
13.
Sci Rep ; 14(1): 25441, 2024 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455591

RESUMO

Influenza poses a significant threat to global health, with the ability to cause severe epidemics and pandemics. The polymerase basic protein 2 (PB2) of the influenza virus plays a crucial role in the viral replication process, making the CAP-binding domain of PB2 an attractive target for antiviral drug development. This study aimed to identify and evaluate potential inhibitors of the influenza polymerase PB2 CAP-binding domain using computational drug discovery methods. We employed a comprehensive computational approach involving virtual screening, molecular docking, and 500 ns molecular dynamics (MD) simulations. Compounds were selected from the Diverse lib database and assessed for their binding affinity and stability in interaction with the PB2 CAP-binding domain. The study utilized the generalized amber force field (GAFF) for MD simulations to further evaluate the dynamic behaviour and stability of the interactions. Among the screened compounds, compounds 1, 3, and 4 showed promising binding affinities. Compound 4 demonstrated the highest binding stability and the most favourable free energy profile, indicating strong and consistent interaction with the target domain. Compound 3 displayed moderate stability with dynamic conformational changes, while Compound 1 maintained robust interactions throughout the simulations. Comparative analyses of these compounds against a control compound highlighted their potential efficacy. Compound 4 emerged as the most promising inhibitor, with substantial stability and strong binding affinity to the PB2 CAP-binding domain. These findings suggest that compound 4, along with compounds 1 and 3, holds the potential for further development into effective antiviral agents against influenza. Future studies should focus on experimental validation of these compounds and exploration of resistance mechanisms to enhance their therapeutic utility.


Assuntos
Antivirais , Descoberta de Drogas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA , Proteínas Virais , Antivirais/farmacologia , Antivirais/química , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ligação Proteica , Humanos , Sítios de Ligação , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Termodinâmica
14.
J Biomol Struct Dyn ; : 1-18, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39460490

RESUMO

Satureja nabateorum, known as Nabatean savory is a Lamiaceae plant native to the Arabian Peninsula, specifically in the mountainous regions of Saudi Arabia. The study aims to investigate the phytochemical components of the S. nabateorum leaves (SNL) and stems (SNS) extract and to assess their antioxidant, antimicrobial, and antiproliferative properties. Methanol extracts from leaves and stems were analyzed for chemical constituents using the GC-MS technique. Antioxidant capacities were measured using hydrogen peroxide and ABTS radical-scavenging methods, and antimicrobial activity was tested against various microorganisms. Cytotoxic activity on four human malignant cell lines was assessed using MTT and flow cytometry. Molecular docking and molecular dynamics studies were conducted to understand the interactions and binding modes of the extracted compounds at a molecular level. GC-MS analysis of SNL extract revealed thymol, carvacrol, and p-cymen-8-ol as major constituents. SNS extract contained ß-sitosterol, stigmasterol, lupeol, and lup-20(29)-ene-3ß,28-diol. SNS extract exhibited more potent antioxidant, antimicrobial, and anticancer effects than SNL extract. The extract, SNS, exhibited potential toxicity in A549 cells with an IC50 value of 3.62 µg/mL and induced marked apoptotic effects with S phase-cell cycle arrest. SNS extract also showed higher levels of Caspase 3, Bax, p53, and the Bax/Bcl2 ratio and lower levels of Bcl-2. Molecular docking and dynamic simulation supported these findings, targeting the EGFR TK domain. The study suggests that the S. nabateorum stem extract holds promise as a potent antimicrobial, antioxidant, and anticancer agent. It provides valuable insights for considering the extract as a substitute for chemotherapy and/or protective agents.

15.
Sci Rep ; 14(1): 25462, 2024 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-39462121

RESUMO

Tamarix tetragyna is a plant grows in Mediterranean area and some Arab countries. It possesses numerous medicinal values. Purpose of our study is to explore biological activity of tamarix tetragyna extracts of both leaves and stem with investigating their phytochemical composition. The investigated extracts' phyto-constituent composition was determined using gas chromatographic-mass spectrometric method. In addition, in vitro cytoxicity activity versus cancer cell lines such MCF-7, HepG-2, HCT-116, and A-549 was examined by MTT assay method, together with exploring its apoptosis effect by flow cytometry and western blot analysis techniques. Moreover, some phytochemical compounds were identified, and in-silico evaluated against anticancer molecular targets. Plant extracts showed good cytotoxic activity against both A-549 and HCT-116 cancer cell lines. With an IC50 value of 23.90 µg/ml that led to apoptosis and G2/M-phase arrest in A-549 cells, cytotoxicity data demonstrate leaves' extract effectiveness against these cells. Upon GC-MS analysis, it revealed presence of some bioactive components such as Stigmast-5-en-3-ol and 2-methoxy-4-vinyl phenol, which are known for their cytotoxic activity. Our findings suggest that methanolic extracts of Tamarix tetragyna parts may have potential therapeutic uses as anticancer against A-549 cells, which opens up further avenues for investigation into its industrial applications.


Assuntos
Apoptose , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Tamaricaceae , Humanos , Tamaricaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Apoptose/efeitos dos fármacos , Folhas de Planta/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Células MCF-7 , Linhagem Celular Tumoral , Cromatografia Gasosa-Espectrometria de Massas , Células HCT116 , Células Hep G2 , Células A549
16.
Sci Rep ; 14(1): 11118, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750062

RESUMO

This study focused on developing novel pyridine-3-carboxamide analogs to treat bacterial wilt in tomatoes caused by Ralstonia solanacearum. The analogs were synthesized through a multistep process and their structures confirmed using spectroscopy. Molecular docking studies identified the most potent analog from the series. A specific analog, compound 4a, was found to significantly enhance disease resistance in tomato plants infected with R. solanacearum. The structure-activity relationship analysis showed the positions and types of substituents on the aromatic rings of compounds 4a-i strongly influenced their biological activity. Compound 4a, with a chloro group at the para position on ring C and hydroxyl group at the ortho position on ring A, was exceptionally effective against R. solanacearum. When used to treat seeds, the analogs displayed remarkable efficacy, especially compound 4a which had specific activity against bacterial wilt pathogens. Compound 4a also promoted vegetative and reproductive growth of tomato plants, increasing seed germination and seedling vigor. In plants mechanically infected with bacteria, compound 4a substantially reduced the percentage of infection, pathogen quantity in young tissue, and disease progression. The analogs were highly potent due to their amide linkage. Molecular docking identified the best compounds with strong binding affinities. Overall, the strategic design and synthesis of these pyridine-3-carboxamide analogs offers an effective approach to targeting and controlling R. solanacearum and bacterial wilt in tomatoes.


Assuntos
Simulação de Acoplamento Molecular , Doenças das Plantas , Piridinas , Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/efeitos dos fármacos , Ralstonia solanacearum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Piridinas/farmacologia , Piridinas/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Resistência à Doença
17.
Food Chem Toxicol ; 179: 113969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517548

RESUMO

This study examined the ethanolic extract of the Satureja hortensis L. plant's aerial parts to describe its phytochemical makeup, biological functions, toxicity tests, and in-silico molecular docking tests. The GC-MS analysis was used to evaluate the phytochemical composition of the tested extract, and the ABTS and hydrogen peroxide antioxidant assays were used to measure antioxidant activity. Aspergillus fumigatus, Candida albicans, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris were tested for antimicrobial potential. On cell lines such as HepG-2, MCF-7, A-549, and Panc-1, the in-vitro toxicity was also examined. The A-549 cell line was also used for flow cytometry analysis of apoptosis and cell cycle. Additionally, the compounds discovered by the GC-MS analysis were used in silico tests against biological targets. Eight different phytocompounds were tentatively identified as a result of the GC-MS analysis. The compounds also demonstrated significant antioxidant potential for the ABTS and H2O2 assays (IC50: 2.44 and 28.04 µg/ml, respectively). The tested extract was found to have a range of inhibition zones and to be significantly active against the tested bacterial and fungal strains. Apoptosis and cell cycle analysis for the A-549 cell line showed that the cell cycle was arrested at S-phase, and the extract was also found to be most active against this cell line with an IC50 value of 113.05 µg/ml. The docking studies have emphasized the compounds' interactions and binding scores with the EGFR-TK target as determined by the GC-MS.


Assuntos
Produtos Biológicos , Satureja , Satureja/química , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Composição de Medicamentos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Candida albicans , Extratos Vegetais/farmacologia , Escherichia coli , Antibacterianos/farmacologia
18.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147401

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious pathogen that has emerged as a serious global health concern over the past few decades. Staphylococcal accessory regulator A (SarA) and 4,4'-diapophytoene synthase (CrtM) play a crucial role in biofilm formation and staphyloxanthin biosynthesis. Thus, the present study used a machine learning-based QSAR model to screen 1261 plant-derived natural organic compounds in order to identify a medication candidate with both biofilm and virulence inhibitory potential. Additionally, the in-silico molecular docking analysis has demonstrated significant binding efficacy of the identified hit compound, that is 85137543, with SarA and CrtM when compared to the control compound, hesperidin. Post-MD simulation analysis of the complexes depicted strong binding of 85137543 to both SarA and CrtM. Moreover, 85137543 showed hydrogen bonding with the key residues of both proteins during docking (ALA138 of SarA and ALA134 of CrtM) and post-MD simulation (LYS273 of CrtM and ASN212 of SarA). The RMSD of 85137543 was stable and consistent when bound to both CrtM and SarA with RMSDs of 1.3 and 1 nm, respectively. In addition, principal component analysis and the free energy landscape showed stable complex formation with both proteins. Low binding free energy (ΔGTotal) was observed by 85137543 for SarA (-47.92 kcal/mol) and CrtM (-36.43 kcal/mol), which showed strong binding. Overall, this study identified 85137543 as a potential inhibitor of both SarA and CrtM in MRSA.Communicated by Ramaswamy H. Sarma.

19.
ACS Omega ; 8(37): 34044-34058, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744790

RESUMO

A novel set of thiazolylhydrazonothiazoles bearing an indole moiety were synthesized by subjection reactions of carbothioamide derivative and hydrazonoyl chlorides (or α-haloketones). The cytotoxicity of the synthesized compounds was evaluated against the colon carcinoma cell line (HCT-116), liver carcinoma cell line (HepG2), and breast carcinoma cell line (MDA-MB-231), and demonstrated encouraging activity. Furthermore, when representative products were assessed for toxicity against normal cells, minimal toxic effects were observed, indicating their potential safety for use in pharmacological studies. The mechanism of action of the tested products, as inhibitors of the epidermal growth factor receptor tyrosine kinase domain (EGFR TK) protein, was suggested through docking studies that assessed their binding scores and modes, in comparison to a reference standard (W19), thus endorsing their anticancer activity.

20.
ACS Omega ; 8(35): 32027-32042, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692252

RESUMO

Excessive use of antimicrobial medications including antibiotics has led to the emerging menace of antimicrobial resistance, which, as per the World Health Organization (WHO), is among the top ten public health threats facing humanity, globally. This necessitates that innovative technologies be sought that can aid in the elimination of pathogens and hamper the spread of infections. Zinc oxide (ZnO) has multifunctionality owing to its extraordinary physico-chemical properties and functionality in a range of applications. In this research, ZnO nanoparticles (NPs) were synthesized from zinc nitrate hexahydrate, by a green synthesis approach using Cymbopogon citratus extract followed by characterization of the NPs. The obtained X-ray diffraction peaks of ZnO NPs matched with the standard JCPDS card (no. 89-510). The particles had a size of 20-24 nm, a wurtzite structure with a high crystallinity, and hexagonal rod-like shape. UV-Vis spectroscopy revealed absorption peaks between 369 and 374 nm of ZnO NPs synthesized from C. citratus extract confirming the formation of ZnO. Fourier transform infrared confirmed the ZnO NPs as strong absorption bands were observed in the range of 381-403 cm-1 corresponding to Zn-O bond stretching. Negative values of the highest occupied molecular orbital-lowest unoccupied molecular orbital for ZnO NPs indicated the good potential to form a stable ligand-protein complex. Docking results indicated favorable binding interaction between ZnO and DNA gyrase subunit b with a binding energy of -2.93 kcal/mol. ZnO NPs at various concentrations inhibited the growth of Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration values of ZnO NPs against E. coli and S. aureus were found to be 92.07 ± 0.13 and 88.13 ± 0.35 µg/mL, respectively, at a concentration of 2 mg/mL. AO/EB staining and fluorescence microscopy revealed the ability of ZnO NPs to kill E. coli and S. aureus cells. Through the findings of this study, it has been shown that C. citratus extract can be used in a green synthesis approach to generate ZnO NPs, which can be employed as alternatives to antibiotics and a tool to eliminate drug-resistant microbes in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA