Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328215

RESUMO

Small cell lung cancers (SCLC) are comprised of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLC, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes, including non-canonical BAF (ncBAF) complexes, as top dependencies specific to POU2F3-positive SCLC. Notably, clinical-grade pharmacologic mSWI/SNF inhibition attenuates proliferation of all POU2F3-positive SCLCs, while disruption of ncBAF via BRD9 degradation is uniquely effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, chemical targeting of SMARCA4/2 mSWI/SNF ATPases and BRD9 decrease POU2F3-SCLC tumor growth and increase survival in vivo . Taken together, these results characterize mSWI/SNF-mediated global governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for SCLC.

2.
Cancer Cell ; 42(8): 1352-1369.e13, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39029464

RESUMO

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Mol Cancer Ther ; 21(4): 625-634, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131875

RESUMO

This first-in-human (FIH), phase I, multicenter, open-label study was conducted to characterize the safety, tolerability, pharmacokinetics, and preliminary efficacy, and to establish the MTD/recommended dose for expansion (RDE) of PCA062 in patients with solid tumors. Adult patients with any solid tumor type and having a documented P-cadherin-positive tumor were enrolled; exceptions to P-cadherin positivity requirement were head and neck squamous cell carcinomas (HNSCC) and esophageal squamous cell carcinoma (ESCC). Dose escalation was guided by an adaptive Bayesian logistic regression model with escalation with overdose control to determine the MTD/RDE. Forty-seven patients were treated at 10 different dose levels of PCA062, ranging from 0.4 to 5.0 mg/kg every 2 weeks administered as a 1-hour intravenous infusion. All enrolled patients discontinued the treatment; primary reason for discontinuation was progressive disease (78.7%). All 47 patients experienced at least one AE, of which 32 patients had a grade ≥3 AE and 37 patients experienced AEs suspected to be study drug related. The MTD of PCA062 was 3.6 mg/kg every 2 weeks and thrombocytopenia was reported as a DLT that was attributed to the known toxicities of the DM1 payload with no P-cadherin-related toxicities. Pharmacokinetics was proportional, and no patients developed antidrug antibodies, suggesting adequate exposure at the doses tested. One patient of 47 achieved a partial response and there was no correlation between tumor P-cadherin expression and clinical efficacy. Because of limited antitumor activity at the MTD level, Novartis has terminated clinical development of PCA062 (NCT02375958).


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Imunoconjugados , Neoplasias , Adulto , Teorema de Bayes , Caderinas , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Imunoconjugados/uso terapêutico , Dose Máxima Tolerável , Neoplasias/patologia
4.
Mol Cancer Res ; 20(3): 361-372, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799403

RESUMO

Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.


Assuntos
Adenosina Trifosfatases , Leucemia Mieloide Aguda , Adenosina Trifosfatases/genética , Animais , Carcinogênese , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Blood Cancer J ; 12(7): 110, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853853

RESUMO

Bromodomain-containing protein 9 (BRD9), an essential component of the SWI/SNF chromatin remodeling complex termed ncBAF, has been established as a therapeutic target in a subset of sarcomas and leukemias. Here, we used novel small molecule inhibitors and degraders along with RNA interference to assess the dependency on BRD9 in the context of diverse hematological malignancies, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) model systems. Following depletion of BRD9 protein, AML cells undergo terminal differentiation, whereas apoptosis was more prominent in ALL and MM. RNA-seq analysis of acute leukemia and MM cells revealed both unique and common signaling pathways affected by BRD9 degradation, with common pathways including those associated with regulation of inflammation, cell adhesion, DNA repair and cell cycle progression. Degradation of BRD9 potentiated the effects of several chemotherapeutic agents and targeted therapies against AML, ALL, and MM. Our findings support further development of therapeutic targeting of BRD9, alone or combined with other agents, as a novel strategy for acute leukemias and MM.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Mieloma Múltiplo , Fatores de Transcrição , Antineoplásicos/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Clin Cancer Res ; 27(1): 342-354, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046519

RESUMO

PURPOSE: SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. EXPERIMENTAL DESIGN: The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRASG12Ci, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models in vitro and in vivo, and their effects on downstream signaling were examined. RESULTS: In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAFV600E colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRASG12C cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRASG12Ci and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. CONCLUSIONS: Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Mutação , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Ther ; 20(7): 1270-1282, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33879555

RESUMO

The cell surface glycoprotein P-cadherin is highly expressed in a number of malignancies, including those arising in the epithelium of the bladder, breast, esophagus, lung, and upper aerodigestive system. PCA062 is a P-cadherin specific antibody-drug conjugate that utilizes the clinically validated SMCC-DM1 linker payload to mediate potent cytotoxicity in cell lines expressing high levels of P-cadherin in vitro, while displaying no specific activity in P-cadherin-negative cell lines. High cell surface P-cadherin is necessary, but not sufficient, to mediate PCA062 cytotoxicity. In vivo, PCA062 demonstrated high serum stability and a potent ability to induce mitotic arrest. In addition, PCA062 was efficacious in clinically relevant models of P-cadherin-expressing cancers, including breast, esophageal, and head and neck. Preclinical non-human primate toxicology studies demonstrated a favorable safety profile that supports clinical development. Genome-wide CRISPR screens reveal that expression of the multidrug-resistant gene ABCC1 and the lysosomal transporter SLC46A3 differentially impact tumor cell sensitivity to PCA062. The preclinical data presented here suggest that PCA062 may have clinical value for treating patients with multiple cancer types including basal-like breast cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais , Caderinas/genética , Imunoconjugados/farmacologia , Neoplasias/genética , Sequência de Aminoácidos , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Imuno-Histoquímica , Macaca fascicularis , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Transporte Proteico , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Ther ; 18(12): 2368-2380, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31439712

RESUMO

KRAS, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells in vitro and in vivo using cell line xenografts and primary human tumors. In vitro, sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids. This antitumor activity is also observed in vivo in mouse models. Interrogation of the MAPK pathway in SHP099-treated KRAS-mutant cancer models demonstrated similar modulation of p-ERK and DUSP6 transcripts in 2D, 3D, and in vivo, suggesting a MAPK pathway-dependent mechanism and possible non-MAPK pathway-dependent mechanisms in tumor cells or tumor microenvironment for the in vivo efficacy. For the KRASG12C MIAPaCa-2 model, we demonstrate that the efficacy is cancer cell intrinsic as there is minimal antiangiogenic activity by SHP099, and the effects of SHP099 is recapitulated by genetic depletion of SHP2 in cancer cells. Furthermore, we demonstrate that SHP099 efficacy in KRAS-mutant models can be recapitulated with RTK inhibitors, suggesting RTK activity is responsible for the SHP2 activation. Taken together, these data reveal that many KRAS-mutant cancers depend on upstream signaling from RTK and SHP2, and provide a new therapeutic framework for treating KRAS-mutant cancers with SHP2 inhibitors.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Taquicininas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
ACS Med Chem Lett ; 10(12): 1674-1679, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31857845

RESUMO

Targeted antimitotic agents are a promising class of anticancer therapies. Herein, we describe the development of a potent and selective antimitotic Eg5 inhibitor based antibody-drug conjugate (ADC). Preliminary studies were performed using proprietary Eg5 inhibitors which were conjugated onto a HER2-targeting antibody using maleimido caproyl valine-citrulline para-amino benzocarbamate, or MC-VC-PABC cleavable linker. However, the resulting ADCs lacked antigen-specificity in vivo, probably from premature release of the payload. Second-generation ADCs were then developed, using noncleavable linkers, and the resulting conjugates (ADC-4 and ADC-10) led to in vivo efficacy in an HER-2 expressing (SK-OV-3ip) mouse xenograft model while ADC-11 led to in vivo efficacy in an anti-c-KIT (NCI-H526) mouse xenograft model in a target-dependent manner.

10.
Clin Cancer Res ; 24(14): 3465-3474, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29615457

RESUMO

Purpose: Hypersensitivity reactions (HSRs) were observed in three patients dosed in a phase I clinical trial treated with LOP628, a KIT targeted antibody drug conjugate. Mast cell degranulation was implicated as the root cause for the HSR. Underlying mechanism of this reported HSR was investigated with an aim to identifying potential mitigation strategies.Experimental Design: Biomarkers for mast cell degranulation were evaluated in patient samples and in human peripheral blood cell-derived mast cell (PBC-MC) cultures treated with LOP628. Mitigation strategies interrogated include pretreatment of mast cells with small molecule inhibitors that target KIT or signaling pathways downstream of FcεR1, FcγR, and treatment with Fc silencing antibody formats.Results: Transient elevation of serum tryptase was observed in patients 1-hour posttreatment of LOP628. In agreement with the clinical observation, LOP628 and its parental antibody LMJ729 induced degranulation of human PBC-MCs. Unexpectedly, KIT small molecule inhibitors did not abrogate mast cell degranulation. By contrast, small molecule inhibitors that targeted pathways downstream of Fc receptors blunted degranulation. Furthermore, interference of the KIT antibody to engage Fc receptors by pre-incubation with IgG or using engineered Fc silencing mutations reduced or prevented degranulation. Characterization of Fcγ receptors revealed human PBC-MCs expressed both FcγRII and low levels of FcγRI. Interestingly, increasing the level of FcγRI upon addition of IFNγ, significantly enhanced LOP628-mediated mast cell degranulation.Conclusions: Our data suggest LOP628-mediated mast cell degranulation is the likely cause of HSR observed in the clinic due to co-engagement of the FcγR and KIT, resulting in mast cell activation. Clin Cancer Res; 24(14); 3465-74. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Ensaios Clínicos Fase I como Assunto , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/uso terapêutico , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Fc/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
ACS Med Chem Lett ; 9(8): 838-842, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30128077

RESUMO

Antibody-drug conjugates (ADCs) are a novel modality that allows targeted delivery of potent therapeutic agents to the desired site. Herein we report our discovery of NAMPT inhibitors as a novel nonantimitotic payload for ADCs. The resulting anti-c-Kit conjugates (ADC-3 and ADC-4) demonstrated in vivo efficacy in the c-Kit positive gastrointestinal stromal tumor GIST-T1 xenograft model in a target-dependent manner.

12.
J Med Chem ; 61(7): 2837-2864, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29562737

RESUMO

In breast cancer, estrogen receptor alpha (ERα) positive cancer accounts for approximately 74% of all diagnoses, and in these settings, it is a primary driver of cell proliferation. Treatment of ERα positive breast cancer has long relied on endocrine therapies such as selective estrogen receptor modulators, aromatase inhibitors, and selective estrogen receptor degraders (SERDs). The steroid-based anti-estrogen fulvestrant (5), the only approved SERD, is effective in patients who have not previously been treated with endocrine therapy as well as in patients who have progressed after receiving other endocrine therapies. Its efficacy, however, may be limited due to its poor physicochemical properties. We describe the design and synthesis of a series of potent benzothiophene-containing compounds that exhibit oral bioavailability and preclinical activity as SERDs. This article culminates in the identification of LSZ102 (10), a compound in clinical development for the treatment of ERα positive breast cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/síntese química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Desenho de Fármacos , Descoberta de Drogas , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Tiofenos/química , Tiofenos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 24(17): 4297-4308, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764854

RESUMO

Purpose: c-KIT overexpression is well recognized in cancers such as gastrointestinal stromal tumors (GIST), small cell lung cancer (SCLC), melanoma, non-small cell lung cancer (NSCLC), and acute myelogenous leukemia (AML). Treatment with the small-molecule inhibitors imatinib, sunitinib, and regorafenib resulted in resistance (c-KIT mutant tumors) or limited activity (c-KIT wild-type tumors). We selected an anti-c-KIT ADC approach to evaluate the anticancer activity in multiple disease models.Experimental Design: A humanized anti-c-KIT antibody LMJ729 was conjugated to the microtubule destabilizing maytansinoid, DM1, via a noncleavable linker (SMCC). The activity of the resulting ADC, LOP628, was evaluated in vitro against GIST, SCLC, and AML models and in vivo against GIST and SCLC models.Results: LOP628 exhibited potent antiproliferative activity on c-KIT-positive cell lines, whereas LMJ729 displayed little to no effect. At exposures predicted to be clinically achievable, LOP628 demonstrated single administration regressions or stasis in GIST and SCLC xenograft models in mice. LOP628 also displayed superior efficacy in an imatinib-resistant GIST model. Further, LOP628 was well tolerated in monkeys with an adequate therapeutic index several fold above efficacious exposures. Safety findings were consistent with the pharmacodynamic effect of neutropenia due to c-KIT-directed targeting. Additional toxicities were considered off-target and were consistent with DM1, such as effects in the liver and hematopoietic/lymphatic system.Conclusions: The preclinical findings suggest that the c-KIT-directed ADC may be a promising therapeutic for the treatment of mutant and wild-type c-KIT-positive cancers and supported the clinical evaluation of LOP628 in GIST, AML, and SCLC patients. Clin Cancer Res; 24(17); 4297-308. ©2018 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Xenoenxertos , Humanos , Mesilato de Imatinib/farmacologia , Imunoconjugados/imunologia , Camundongos , Mutação , Neoplasias/classificação , Neoplasias/imunologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia
14.
Clin Cancer Res ; 12(16): 4908-15, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16914579

RESUMO

PURPOSE: The ectopically expressed and deregulated fibroblast growth factor receptor 3 (FGFR3) results from a t(4;14) chromosomal translocation that occurs in approximately 15% of multiple myeloma (MM) patients and confers a particularly poor prognosis. This study assesses the antimyeloma activity of CHIR-258, a small-molecule inhibitor of multiple receptor tyrosine kinases that is currently in phase I trials, in a newly developed FGFR3-driven preclinical MM animal model. EXPERIMENTAL DESIGN: We developed an orthotopic MM model in mice using a luciferase-expressing human KMS-11-luc line that expresses mutant FGFR3 (Y373C). The antimyeloma activity of CHIR-258 was evaluated at doses that inhibited FGFR3 signaling in vivo in this FGFR3-driven animal model. RESULTS: Noninvasive bioluminescence imaging detected MM lesions in nearly all mice injected with KMS-11-luc cells, which were mainly localized in the spine, skull, and pelvis, resulting in frequent development of paralysis. Daily oral administration of CHIR-258 at doses that inhibited FGFR3 signaling in KMS-11-luc tumors in vivo resulted in a significant inhibition of KMS-11-luc tumor growth, which translated into a significant improvement in animal survival. CONCLUSIONS: Our data provide a relevant preclinical basis for clinical trials of CHIR-258 in FGFR3-positive MM patients.


Assuntos
Benzimidazóis/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Quinolonas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mieloma Múltiplo/enzimologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/sangue , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Med Chem ; 60(7): 2790-2818, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28296398

RESUMO

Tetrahydroisoquinoline 40 has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ 40 and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ 40 in a MCF-7 human breast cancer xenograft model.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/uso terapêutico , Acrilatos/química , Acrilatos/farmacocinética , Acrilatos/farmacologia , Acrilatos/uso terapêutico , Administração Oral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cães , Descoberta de Drogas , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteólise/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacocinética , Tetra-Hidroisoquinolinas/farmacologia
16.
Clin Cancer Res ; 10(2): 739-50, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14760097

RESUMO

PURPOSE: The purpose of this research was to assess in vivo by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) the antiangiogenic effect of SU6668, an oral, small molecule inhibitor of the angiogenic receptor tyrosine kinases vascular endothelial growth factor receptor 2 (Flk-1/KDR), platelet-derived growth factor receptor, and fibroblast growth factor receptor 1. EXPERIMENTAL DESIGN: A s.c. tumor model of HT29 human colon carcinoma in athymic mice was used. DCE-MRI with a macromolecular contrast agent was used to measure transendothelial permeability and fractional plasma volume, accepted surrogate markers of tumor angiogenesis. CD31 immunohistochemical staining was used for assessing microvessels density and vessels area. Experiments were performed after 24 h, and 3, 7, and 14 days of treatment. RESULTS: DCE-MRI clearly detected the early effect (after 24 h of treatment) of SU6668 on tumor vasculature as a 51% and 26% decrease in the average vessel permeability measured in the tumor rim and core (respectively). A substantial decrease was also observed in average fractional plasma volume in the rim (59%) and core (35%) of the tumor. Histological results confirmed magnetic resonance imaging findings. After 3, 7, and 14 days of treatment, postcontrast magnetic resonant images presented a thin strip of strongly enhanced tissue at the tumor periphery; histology examination showed that this hyperenhanced ring corresponded to strongly vascularized tissue adjacent but external to the tumor. Histology also revealed a strong decrease in the thickness of peripheral viable tissue, with a greatly reduced vessel count. SU6668 greatly inhibited tumor growth, with 60% inhibition at 14 days of treatment. CONCLUSIONS: DCE-MRI detected in vivo the antiangiogenic efficacy of SU6668.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias do Colo/tratamento farmacológico , Indóis/farmacologia , Imageamento por Ressonância Magnética/métodos , Pirróis/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Meios de Contraste/farmacologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Modelos Estatísticos , Transplante de Neoplasias , Neovascularização Patológica , Oxindóis , Permeabilidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Propionatos , Proteínas Tirosina Quinases/metabolismo , Fatores de Tempo
17.
Clin Cancer Res ; 9(1): 327-37, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12538485

RESUMO

One challenging aspect in the clinical development of molecularly targeted therapies, which represent a new and promising approach to treating cancers, has been the identification of a biologically active dose rather than a maximum tolerated dose. The goal of the present study was to identify a pharmacokinetic/pharmacodynamic relationship in preclinical models that could be used to help guide selection of a clinical dose. SU11248, a novel small molecule receptor tyrosine kinase inhibitor with direct antitumor as well as antiangiogenic activity via targeting the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases, was used as the pharmacological agent in these studies. In mouse xenograft models, SU11248 exhibited broad and potent antitumor activity causing regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. To predict the target SU11248 exposure required to achieve antitumor activity in mouse xenograft models, we directly measured target phosphorylation in tumor xenografts before and after SU11248 treatment and correlated this with plasma inhibitor levels. In target modulation studies in vivo, SU11248 selectively inhibited Flk-1/KDR (VEGF receptor 2) and PDGF receptor beta phosphorylation (in a time- and dose-dependent manner) when plasma concentrations of inhibitor reached or exceeded 50-100 ng/ml. Similar results were obtained in a functional assay of VEGF-induced vascular permeability in vivo. Constant inhibition of VEGFR2 and PDGF receptor beta phosphorylation was not required for efficacy; at highly efficacious doses, inhibition was sustained for 12 h of a 24-h dosing interval. The pharmacokinetic/pharmacodynamic relationship established for SU11248 in these preclinical studies has aided in the design, selection, and evaluation of dosing regimens being tested in human trials.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirróis/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Camundongos , Camundongos Nus , Modelos Químicos , Transplante de Neoplasias , Fosforilação , Sunitinibe , Fatores de Tempo , Células Tumorais Cultivadas
18.
Mol Cancer Ther ; 2(5): 471-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12748309

RESUMO

The purpose of this study was to evaluate the activity of the indolinone kinase inhibitor SU11248 against the receptor tyrosine kinase KIT in vitro and in vivo, examine the role of KIT in small cell lung cancer (SCLC), and anticipate clinical utility of SU11248 in SCLC. SU11248 is an oral, multitargeted tyrosine kinase inhibitor with direct antitumor and antiangiogenic activity through targeting platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor, KIT, and FLT3 receptors. Treatment of the KIT-expressing SCLC-derived NCI-H526 cell line in vitro with SU11248 resulted in dose-dependent inhibition of stem cell factor-stimulated KIT phosphotyrosine levels and proliferation. The biological significance of KIT inhibition was evaluated in vivo by treating mice bearing s.c. NCI-H526 tumors with SU11248 or another structurally unrelated KIT inhibitor, STI571 (Gleevec), which is also known to inhibit Bcr-Abl and PDGFRbeta. SU11248 treatment resulted in significant tumor growth inhibition, whereas inhibition from STI571 treatment was less dramatic. Both compounds reduced phospho-KIT levels in NCI-H526 tumors, with a greater reduction by SU11248, correlating with efficacy. Likewise, phospho-PDGFRbeta levels contributed by tumor stroma and with known involvement in angiogenesis were strongly inhibited by SU11248 and less so by STI571. Because platinum-based chemotherapy is part of the standard of care for SCLC, SU11248 was combined with cisplatin, and significant tumor growth delay was measured compared with either agent alone. These results expand the profile of SU11248 as a KIT signaling inhibitor and suggest that SU11248 may have clinical potential in the treatment of SCLC via direct antitumor activity mediated via KIT as well as tumor angiogenesis via vascular endothelial growth factor receptor FLK1/KDR and PDGFRbeta.


Assuntos
Carcinoma de Células Pequenas/metabolismo , Indóis/farmacologia , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-kit/efeitos dos fármacos , Pirróis/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas , Carcinoma de Células Pequenas/patologia , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Mesilato de Imatinib , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Fosforilação , Fosfotirosina/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Células-Tronco/fisiologia , Sunitinibe , Células Tumorais Cultivadas/transplante
19.
Mol Cancer Ther ; 2(10): 1011-21, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14578466

RESUMO

SU11248 is an oral multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activities through targeting platelet-derived growth factor receptor, vascular endothelial growth factor receptor, KIT, and FLT3, the first three of which are expressed in human breast cancer and/or its supporting tissues. The purpose of the present studies was to demonstrate the potent anticancer activity of SU11248 alone or in combination with conventional cytotoxic agents against several distinct preclinical models of breast cancer. SU11248 was administered as a monotherapy to (1) mouse mammary tumor virus-v-Ha-ras mice and 7,12-dimethylbenz(a)anthracene-treated rats bearing mammary tumors and (2) mice bearing human breast cancer xenografts of s.c. MX-1 tumors and osseous metastasis of a MDA-MB-435-derived cell line (435/HAL-Luc). SU11248 was also administered in combination with docetaxel both in xenograft models and in combination with 5-fluorouracil and doxorubicin in the MX-1 model. SU11248 treatment potently regressed growth of mammary cancers in mouse mammary tumor virus-v-Ha-ras transgenic mice (82% regression) and 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats (99% regression at the highest dose; P < 0.05 for both). This agent also inhibited MX-1 tumor growth by 52%, with markedly enhanced anticancer effects when administered in combination with docetaxel, 5-fluorouracil, or doxorubicin compared with either agent alone (P < 0.05). SU11248 treatment in combination with docetaxel effectively prolonged survival of mice, with 435/HAL-Luc cancer xenografts established in bone compared with either agent alone (P < 0.05). These results demonstrate that SU11248 is effective in preclinical breast cancer models and suggest that it may be useful in the treatment of breast cancer in the clinic.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Pirróis/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Fluoruracila/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Fosforilação , Ratos , Ratos Sprague-Dawley , Sunitinibe , Fatores de Tempo
20.
Clin Exp Metastasis ; 20(8): 757-66, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14713109

RESUMO

The aim of the study was to investigate inhibitory effects of the receptor tyrosine kinase (RTK) inhibitor SU11248 against CSF-1R and osteoclast (OC) formation. We developed an in vivo model of breast cancer metastasis to evaluate efficacy of SU11248 against tumor growth and tumor-induced osteolysis in bone. The in vitro effects of SU11248 on CSF-1R phosphorylation, OC formation and function were evaluated. Effects on 435/HAL-Luc tumor growth in bone were monitored by in vivo bioluminescence imaging (BLI), and inhibition of osteolysis was evaluated by measurement of serum pyridinoline (PYD) concentration and histology. Phosphorylation of the receptor for M-CSF (CSF-1R) expressed by NIH3T3 cells was inhibited by SU11248 with an IC50 of 50-100 nM, consistent with CSF-1R belonging to the class III split kinase domain RTK family. The early M-CSF-dependent phase of in vitro murine OC development and function were inhibited by SU11248 at 10-100 nM. In vivo inhibition of osteolysis was confirmed by significant lowering of serum PYD levels following SU11248 treatment of tumor-bearing mice (P = 0.047). Using BLI, SU11248 treatment at 40 mg/kg/day for 21 days showed 64% inhibition of tumor growth in bone (P = 0.006), and at 80 mg/kg/day showed 89% inhibition (P = 0.001). Collectively, these data suggest that SU11248 may be an effective and tolerated therapy to inhibit growth of breast cancer bone metastases, with the additional advantage of inhibiting tumor-associated osteolysis.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/fisiopatologia , Indóis/farmacologia , Osteólise , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Adesão Celular , Camundongos , Camundongos Nus , Transplante de Neoplasias , Osteoclastos , Fosforilação , Sunitinibe , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA