Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Public Health ; 15(2): 289-296, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078755

RESUMO

OBJECTIVES: To clarify the work done by using AI for identifying the genomic sequences, development of drugs and vaccines for COVID-19 and to recognize the advantages and challenges of using such technology. METHODS: A non-systematic review was done. All articles published on Pub-Med, Medline, Google, and Google Scholar on AI or digital health regarding genomic sequencing, drug development, and vaccines of COVID-19 were scrutinized and summarized. RESULTS: The sequence of SARS- CoV-2 was identified with the help of AI. It can help also in the prompt identification of variants of concern (VOC) as delta strains and Omicron. Furthermore, there are many drugs applied with the help of AI. These drugs included Atazanavir, Remdesivir, Efavirenz, Ritonavir, and Dolutegravir, PARP1 inhibitors (Olaparib and CVL218 which is Mefuparib hydrochloride), Abacavir, Roflumilast, Almitrine, and Mesylate. Many vaccines were developed utilizing the new technology of bioinformatics, databases, immune-informatics, machine learning, and reverse vaccinology to the whole SARS-CoV-2 proteomes or the structural proteins. Examples of these vaccines are the messenger RNA and viral vector vaccines. AI provides cost-saving and agility. However, the challenges of its usage are the difficulty of collecting data, the internal and external validation, ethical consideration, therapeutic effect, and the time needed for clinical trials after drug approval. Moreover, there is a common problem in the deep learning (DL) model which is the shortage of interpretability. CONCLUSION: The growth of AI techniques in health care opened a broad gate for discovering the genomic sequences of the COVID-19 virus and the VOC. AI helps also in the development of vaccines and drugs (including drug repurposing) to obtain potential preventive and therapeutic agents for controlling the COVID-19 pandemic.


Assuntos
COVID-19 , Vacinas Virais , Inteligência Artificial , Vacinas contra COVID-19 , Desenvolvimento de Medicamentos , Humanos , Pandemias , SARS-CoV-2
2.
Front Pharmacol ; 12: 770762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153741

RESUMO

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson's disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA