Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110845

RESUMO

Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact angle on ALD-HA 86.2° vs. 86.7° on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm) was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA might be a consequence of the topographical properties of the coating. The absence of resorptive osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the coating to induce osteoclast differentiation.


Assuntos
Monócitos , Titânio , Animais , Bovinos , Humanos , Titânio/farmacologia , Durapatita/farmacologia , Durapatita/química , Osteoclastos/metabolismo , Diferenciação Celular , Ligante RANK/metabolismo
2.
Eur J Oral Sci ; 129(3): e12783, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33724569

RESUMO

This aim of this study was to investigate the effects of three types of air-abrasion particles on dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis, both of which were cultured on sandblasted and acid-etched (SA) titanium discs. Out of 24 SA discs with biofilm, 18 were exposed to either air-abrasion using Bioglass 45S5 (45S5 BG; n = 6), novel zinc (Zn)-containing bioactive glass (Zn4 BG; n = 6), or inert glass (n = 6). The efficiency of biofilm removal was evaluated using scanning electron microscopy (SEM) imaging and culturing techniques. Air-abrasion using 45S5 BG or Zn4 BG demonstrated a significant decrease in the total number of viable bacteria compared to discs air-abraded with inert glass or intact biofilm without abrasion. Moreover, P. gingivalis could not be detected from SEM images nor culture plates after air-abrasion with 45S5 BG or Zn4 BG. The present study showed that air-abrasion with 45S5 or Zn4 bioactive glasses can successfully eradicate dual-biofilm of F. nucleatum and P. gingivalis from sandblasted and acid-etched titanium discs.


Assuntos
Fusobacterium nucleatum , Porphyromonas gingivalis , Biofilmes , Microscopia Eletrônica de Varredura , Titânio
3.
Eur J Oral Sci ; 128(2): 160-169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32154611

RESUMO

The aim of this study was to evaluate the hydrophilicity, surface free energy, and proliferation and viability of human osteoblast-like MC3T3-E1 cells on sandblasted and acid-etched titanium surfaces after air-abrasion with 45S5 bioactive glass, zinc-containing bioactive glass, or inert glass. Sandblasted and acid-etched titanium discs were subjected to air-abrasion with 45S5 bioactive glass, experimental bioactive glass (Zn4), or inert glass. Water contact angles and surface free energy were evaluated. The surfaces were studied with preosteoblastic MC3T3-E1 cells. Air-abrasion with either type of glass significantly enhanced the hydrophilicity and surface free energy of the sandblasted and acid-etched titanium discs. The MC3T3-E1 cell number was higher for substrates air-abraded with Zn4 bioactive glass and similar to that observed on borosilicate coverslips (controls). Confocal laser scanning microscopy images showed that MC3T3-E1 cells did not spread as extensively on the sandblasted and acid-etched and bioactive glass-abraded surfaces as they did on control surfaces. However, for 45S5- and Zn4-treated samples, the cells spread most at the 24 h time point and changed their morphology to more spindle-like when cultured further. Air-abrasion with bioactive glass and inert glass was shown to have a significant effect on the wettability and surface free energy of the surfaces under investigation. Osteoblast cell proliferation on sandblasted and acid-etched titanium discs was enhanced by air-abrasion with 45S5 bioactive glass and experimental Zn4 bioactive glass compared with air-abrasion with inert glass or no air-abrasion.


Assuntos
Osteoblastos , Proliferação de Células , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio , Molhabilidade
4.
J Oral Implantol ; 45(6): 444-450, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536440

RESUMO

Streptococcus mutans is able to form a high-affinity biofilm on material surfaces. S mutans has also been detected around infected implants. Bioactive glasses (BAGs) have been shown to possess antibacterial effects against S mutans and other microorganisms. This in vitro study was performed to investigate the influence of BAG air abrasion on S mutans biofilm on sandblasted and acid-etched titanium surfaces. Sandblasted and acid-etched commercially pure titanium discs were used as substrates for bacteria (n = 107). The discs were immersed in an S mutans solution and incubated for 21 hours to form an S mutans biofilm. Twenty colonized discs were subjected to air abrasion with Bioglass 45S5 (45S5 BAG), experimental zinc oxide containing BAG (Zn4 BAG), and inert glass. After the abrasion, the discs were incubated for 5 hours in an anaerobic chamber followed by an assessment of viable S mutans cells. Surface morphology was evaluation using scanning electron microscopy (n = 12). The thrombogenicity of the glass particle-abraded discs (n = 75) was evaluated spectrophotometrically using whole-blood clotting measurement at predetermined time points. Air abrasion with 45S5 and Zn4 BAG eradicated S mutans biofilm. Significantly fewer viable S mutans cells were found on discs abraded with the 45S5 or Zn4 BAGs compared with the inert glass (P < .001). No significant differences were found in thrombogenicity since blood clotting was achieved for all substrates at 40 minutes. Air abrasion with BAG particles is effective in the eradication of S mutans biofilm from sandblasted and acid-etched titanium surfaces. Zn4 and 45S5 BAGs had similar biofilm-eradicating effects, but Zn4 BAG could be more tissue friendly. In addition, the steady release of zinc ions from Zn4 may enhance bone regeneration around the titanium implant and may thus have the potential to be used in the treatment of peri-implantitis. The use of either BAGs did not enhance the speed of blood coagulation.


Assuntos
Peri-Implantite , Streptococcus mutans , Biofilmes , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio
5.
Int J Dent ; 2024: 9079673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533472

RESUMO

Establishing a proper soft tissue adhesion around the implant abutment is essential to prevent microbial invasion, inhibit epithelial downgrowth, and obtain an optimal healing process. This systematic review aims to evaluate the real potential of TiO2 coating on the behavior of peri-implant soft tissue health and maintenance. A specific aim was to evaluate clinically and histologically the effect of TiO2 abutment coating on epithelial and connective tissue attachment. Electronic database searches were conducted from 1990 to 2023 in MEDLINE/PubMed and the Web of Science databases. In total, 15 out of 485 publications were included. Eight studies involved humans, and seven were animal studies. Exposure time ranges from 2 days to 5 years. The peri-implant soft tissue evaluations included clinical assessment (plaque index (PI), peri-implant probing pocket depth (PPD), and bleeding on probing (BoP)), histological as well as histomorphometric analysis. The Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies was used to evaluate the overall quality of the studies included in the review. The results showed some variation but remained within acceptable limits. Within the limitations of this systematic review, the present findings suggest that TiO2 coatings seem to influence soft tissue healing. TiO2-coated abutments with a roughness value between 0.2 and 0.5 µm enhance soft tissue health. Sol-gel-derived TiO2 coatings induced better soft tissue attachment than noncoated machined abutment surfaces. The anodized titanium abutments demonstrate comparable clinical and histological outcomes to conventional machined abutments. However, there was variation among the included studies concerning TiO2 coating characteristics and the measured outcomes used to evaluate the soft tissue response, and therefore, quantitative analysis was not feasible. Long-term in vivo studies with standardized soft tissue analysis and coating surface parameters are necessary before a definitive conclusion can be drawn. OSF Registration No.: 10.17605/OSF.IO/E5RQV.

6.
Bioengineering (Basel) ; 11(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247951

RESUMO

Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 µm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 µm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.

7.
Dentomaxillofac Radiol ; 52(8): 20230252, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641961

RESUMO

OBJECTIVES: Three-dimensional cone beam computed tomography (CBCT) imaging can be considered, especially in patients with complicated peri-implantitis (PI). Artifacts induced by dense materials are the drawback of CBCT imaging and the peri-implant bone condition may not be assessed reliably because the artifacts are present in the same area. This pilot study investigates the performance of the artifact reduction algorithm (ARA) of the Planmeca Viso G7 CBCT device (Planmeca, Helsinki, Finland) with three different implant materials and imaging parameters. METHODS: Three pairs of dental implants consisting of titanium, zirconia, and fiber reinforced composite (FRC) were set into a pig mandible. A vertical defect simulating peri-implantitis bone loss was made on the buccal side of one of each implant. The defect was identified and measured by two observers and compared to the actual dimensions. In addition, the bone structure and the marginal cortex visibility between the implants were estimated visually. RESULTS: The bone defect and its dimensions with the zirconia implant could not be identified in any image with or without the metal artifact reduction algorithm. The bone defect of titanium and FRC implants were identified with all three imaging parameters or even without ARA. The interobserver agreement between the two observers was almost perfect for all categories analyzed. CONCLUSION: Peri-implantitis defect of the zirconia implant and the peri-implant bone structure of the zirconia implants cannot be recognized reliably with any ARA levels, or any imaging parameters used with the Planmeca Viso G7. The need for ARA when imaging the peri-implant bone condition of the titanium and FRC implants may be unnecessary.


Assuntos
Implantes Dentários , Peri-Implantite , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Animais , Suínos , Peri-Implantite/diagnóstico por imagem , Artefatos , Projetos Piloto , Titânio/química , Tomografia Computadorizada de Feixe Cônico/métodos , Mandíbula
8.
Tissue Eng Part C Methods ; 29(5): 183-196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002888

RESUMO

Bioactive glasses (BAGs) are surface-active ceramic materials that can be used in bone regeneration due to their known osteoconductive and osteoinductive properties. This systematic review aimed to study the clinical and radiographic outcomes of using BAGs in periodontal regeneration. The selected studies were collected from PubMed and Web of Science databases, and included clinical studies investigating the use of BAGs on periodontal bone defect augmentation between January 2000 and February 2022. The identified studies were screened using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A total of 115 full-length peer-reviewed articles were identified. After excluding duplicate articles between the databases and applying the inclusion and exclusion criteria, 14 studies were selected. The Cochrane risk of bias tool for randomized trials was used to assess the selected studies. Five studies compared using BAGs with open flap debridement (OFD) without grafting materials. Two of the selected studies were performed to compare the use of BAGs with protein-rich fibrin, one of which also included an additional OFD group. Also, one study evaluated BAG with biphasic calcium phosphate and used a third OFD group. The remaining six studies compared BAG filler with hydroxyapatite, demineralized freeze-dried bone allograft, autogenous cortical bone graft, calcium sulfate ß-hemihydrate, enamel matrix derivatives, and guided tissue regeneration. This systematic review showed that using BAG to treat periodontal bone defects has beneficial effects on periodontal tissue regeneration. OSF Registration No.: 10.17605/OSF.IO/Y8UCR.


Assuntos
Perda do Osso Alveolar , Regeneração Tecidual Guiada Periodontal , Humanos , Perda do Osso Alveolar/cirurgia , Periodonto , Transplante Ósseo , Regeneração Óssea
9.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984413

RESUMO

The soft tissue-implant interface requires the formation of epithelium and connective tissue seal to hinder microbial infiltration and prevent epithelial down growth. Nanoporous titanium dioxide (TiO2) surface coatings have shown good potential for promoting soft tissue attachment to implant surfaces. However, the impact of their surface properties on the biological response of gingival cells needs further investigation. This systematic review aimed to investigate the cellular behavior of gingival cells on TiO2-implant abutment coatings based on in vitro studies. The review was performed to answer the question: "How does the surface characteristic of TiO2 coatings influence the gingival cell response in in vitro studies?". A search in MEDLINE/PubMed and the web of science databases from 1990 to 2022 was performed using keywords. A quality assessment of the studies selected was performed using the SciRAP method. A total of 11 publications were selected from the 289 studies that fulfilled the inclusion criteria. The mean reporting and methodologic quality SciRAP scores were 82.7 ± 6.4/100 and 87 ± 4.2/100, respectively. Within the limitations of this in vitro systematic review, it can be concluded that the TiO2 coatings with smooth nano-structured surface topography and good wettability improve gingival cell response compared to non-coated surfaces.

10.
Clin Implant Dent Relat Res ; 25(2): 409-418, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36602418

RESUMO

OBJECTIVES: The present study aimed to evaluate the healing of experimentally induced bone defects around contaminated dental implants after air-abrasion using 45S5 or zinc oxide (ZnO)-containing bioactive glasses (BAGs). MATERIALS AND METHODS: One maxillary first molar was extracted from each Sprague-Dawley rat (n = 30). After 4-week healing, a titanium implant was placed in the extraction site with a circumferential bone defect. The rats were randomized into five different groups: (1) implants with Fusobacterium nucleatum and Porphyromonas gingivalis dual-species biofilm (IB); (2) implants with biofilm subjected to inert glass air-abrasion (inert); (3) sterile implants (S); (4) implants with biofilm subjected to 45S5 BAG air-abrasion (45S5); and (5) implants with biofilm subjected to ZnO-containing BAG air-abrasion (Zn4). After 8-week healing, maxillae were dissected, and histomorphometric analyses were performed. RESULTS: The first bone-to-implant contact was significantly shorter for the inert (1.58 ± 1.16 mm; p = 0.016), S (0.28 ± 0.13 mm; p < 0.001), 45S5 (0.41 ± 0.28 mm; p < 0.001), and Zn4 (0.26 ± 0.16 mm; p < 0.001) groups compared to IB group. Also, significantly more bone-to-implant contact was seen for S (72.35% ± 8.32%; p < 0.001), 45S5 (57.91% ± 24.10%; p = 0.002), and Zn4 (70.49% ± 12.74%; p < 0.001) groups than the IB group. The bone volume with the threads demonstrated significantly higher value for S (69.32% ± 9.15%; p < 0.001), 45S5 (58.93% ± 23.53%; p = 0.001), and Zn4 (68.65% ± 12.41%; p < 0.001) groups compared to the IB group. The bone volume within the defects was significantly higher for S (68.79% ± 11.77%; p < 0.001), 45S5 (62.51% ± 20.51%; p = 0.002), and Zn4 (73.81% ± 15.07%; p < 0.001) groups compared to the IB group. CONCLUSIONS: This study suggests that air-abrasion of contaminated moderately rough implant surfaces with either 45S5 or ZnO-containing BAGs enhances osseointegration and bone defect regeneration.


Assuntos
Implantes Dentários , Óxido de Zinco , Ratos , Animais , Propriedades de Superfície , Ratos Sprague-Dawley , Osseointegração , Titânio
11.
Biomolecules ; 12(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35625580

RESUMO

BACKGROUND: The increasing demand for bone implants with improved osseointegration properties has prompted researchers to develop various coating types for metal implants. Atomic layer deposition (ALD) is a method for producing nanoscale coatings conformally on complex three-dimensional surfaces. We have prepared hydroxyapatite (HA) coating on titanium (Ti) substrate with the ALD method and analyzed the biocompatibility of this coating in terms of cell adhesion and viability. METHODS: HA coatings were prepared on Ti substrates by depositing CaCO3 films by ALD and converting them to HA by wet treatment in dilute phosphate solution. MC3T3-E1 preosteoblasts were cultured on ALD-HA, glass slides and bovine bone slices. ALD-HA and glass slides were either coated or non-coated with fibronectin. After 48h culture, cells were imaged with scanning electron microscopy (SEM) and analyzed by vinculin antibody staining for focal adhesion localization. An 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) test was performed to study cell viability. RESULTS: Vinculin staining revealed similar focal adhesion-like structures on ALD-HA as on glass slides and bone, albeit on ALD-HA and bone the structures were thinner compared to glass slides. This might be due to thin and broad focal adhesions on complex three-dimensional surfaces of ALD-HA and bone. The MTT test showed comparable cell viability on ALD-HA, glass slides and bone. CONCLUSION: ALD-HA coating was shown to be biocompatible in regard to cell adhesion and viability. This leads to new opportunities in developing improved implant coatings for better osseointegration and implant survival.


Assuntos
Durapatita , Titânio , Animais , Bovinos , Durapatita/química , Durapatita/farmacologia , Osseointegração , Osteoblastos , Titânio/química , Titânio/farmacologia , Vinculina
12.
Clin Oral Implants Res ; 19(4): 329-34, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18294233

RESUMO

AIMS: This study was designed to evaluate the effect of gap width and graft placement on bone healing around implants placed into simulated extraction sockets in the mandibles of four beagle dogs. MATERIALS AND METHODS: Four Ti-Unite implants (13 mm x 3.3 mm) were placed on each side of the mandible. Three implants were surrounded by a 1.35 mm circumferential and a 5 mm deep gap around the coronal portion of the implants. A fourth implant was inserted conventionally into both sides of the mandibles as a positive control. The gaps were filled with either Bio-Oss, autogenous bone or with a blood clot alone. The study design was balanced for animal, side and modality. Ground sections were prepared from biopsies taken at 3 months, and computer-aided histometric measurements of bone/implant contact and area of bone within threads were made for the coronal 5 mm. Data were analysed using analysis of variance. RESULTS: The mean bone/implant contact was 9.8 mm for the control and ranged from 9.3 to 11.3 mm for the three test modalities. The corresponding values for area within threads were 1 mm(2) and 1-1.2 mm(2). Modality had a significant effect on both bone/implant contact (F=16.9; P<0.0001) and area within threads (F=16.7; P<0.0001). CONCLUSION: The results of this study suggest that both autogenous bone graft and Bio-Oss played an important role in the amount of hard tissue fill and osseointegration occurring within marginal bone defects around implants.


Assuntos
Substitutos Ósseos/farmacologia , Transplante Ósseo/fisiologia , Implantação Dentária Endóssea/métodos , Implantes Dentários , Osseointegração , Análise de Variância , Animais , Coagulação Sanguínea , Bovinos , Cães , Implantes Experimentais , Minerais/farmacologia , Osseointegração/efeitos dos fármacos , Osseointegração/fisiologia , Alvéolo Dental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA