Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 6: 100401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36479227

RESUMO

The evaluation of the electrochemical determination of Saccharomyces cerevisiae was carried out using a screen-printed carbon electrode (SPCE) modified with Nafion-dispersed oxidized multi-walled carbon nanotubes (OMWCNT). The morphology was studied using scanning electron microscopy (SEM), showing a complete modification of the surface with the nanotubes and yeast interaction with them instead of the graphite surface. The redox couple Fe(CN)6 4-/Fe(CN)6 3- was used to determine the electroactive area, the heterogeneous transfer constant, and the Nafion® effect. Results showed increases in electroactive area and heterogeneous transfer constant of 146% and 20.4%, respectively, due to the presence of nanotubes. Studies of the Nafion® effect showed that the polymeric membrane affects the electroactive area but not the heterogeneous transfer constant. Studies of the scan rate effect show that yeast oxidation is an irreversible mixed control process. As the concentration and scan rate increased, the anodic potential shifted toward more anodic values. The relationship between yeast concentration and the anodic current density (current/electroactive area) of yeast showed a linear range between 0.61 and 7.69 g L-1, the limit of detection (LOD) and the limit of quantification (LOQ) were 0.17 g L-1, and 0.61 g L-1, respectively, and the sensibility obtained was 0.03 µA L g-1 mm-2. These results show that with the screen-printed carbon electrodes it is possible to improve the electrochemical determination of this microorganism, enhancing the analytical parameters and quantification, allowing greater portability and decreasing measurement times and associated waste.

2.
Curr Res Food Sci ; 5: 351-359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198994

RESUMO

The electrochemical behavior of Saccharomyces cerevisiae sp was studied using a glassy carbon electrode (GCE) modified with Nafion-dispersed oxidized multi-walled carbon nanotubes (OMWCNT). The morphology was studied using scanning electron microscopy (SEM), showing that the yeast sticks to the carbon nanotube surface instead of the glassy carbon surface. The redox couple Fe(CN)6 4-/Fe(CN)6 3- was used to determine the electroactive area and the heterogeneous transfer constant, which increased 80.5% and 108% respectively by the presence of nanotubes. The studies of the pH effect showed that the anodic potential decreases at alkaline pH and that the highest current intensity occurs at a pH value of 7.00. Studies of the scan rate effect have shown that yeast oxidation is an irreversible mixed control process in which two electrons participate. The relationship between yeast concentration and the anodic current density was studied using different electrochemical techniques obtaining the best analytical parameters through chronoamperometry. The linear range was between 3.36 and 6.52 g L-1, the limit of detection (LOD) and the limit of quantification (LOQ) were 0.98 g L-1 and 3.36 g L-1 respectively, and the sensibility obtained was 0.086 µA L g-1 mm-2. These results show that the multi-walled carbon nanotubes in water and Nafion® allow obtaining an anodic signal corresponding to the yeast, which facilitates its quantification through electrochemical methodologies, favoring the reduction of analysis times and costs compared with other techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA