Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 70(5): 855-65, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22321262

RESUMO

In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ativação Transcricional , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/metabolismo , Flores/fisiologia , Genes de Plantas , Genes Reporter , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Protoplastos/citologia , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
2.
Proc Natl Acad Sci U S A ; 104(7): 2531-6, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17277084

RESUMO

Nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins mediate pathogen recognition in both mammals and plants. The molecular mechanisms by which pathogen molecules activate NBS-LRR proteins are poorly understood. Here we show that RPS5, a NBS-LRR protein from Arabidopsis, is activated by AvrPphB, a bacterial protease, via an indirect mechanism. When transiently expressed in Nicotiana benthamiana leaves, full-length RPS5 protein triggered programmed cell death, but only when coexpressed with AvrPphB and a second Arabidopsis protein, PBS1, which is a specific substrate of AvrPphB. Using coimmunoprecipitation analysis, we found that PBS1 is in a complex with the N-terminal coiled coil (CC) domain of RPS5 before exposure to AvrPphB. Deletion of the RPS5 LRR domain caused RPS5 to constitutively activate programmed cell death, even in the absence of AvrPphB and PBS1, and this activation depended on both the CC and NBS domains. The LRR and CC domains both coimmunoprecipitate with the NBS domain but not with each other. Thus, the LRR domain appears to function in part to inhibit RPS5 signaling, and cleavage of PBS1 by AvrPphB appears to release RPS5 from this inhibition. An amino acid substitution in the NBS site of RPS5 that is known to inhibit ATP binding in other NBS-LRR proteins blocked activation of RPS5, whereas a substitution thought to inhibit ATP hydrolysis constitutively activated RPS5. Combined, these data suggest that ATP versus ADP binding functions as a molecular switch that is flipped by cleavage of PBS1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Repetições Ricas em Leucina , Peptídeo Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/genética , Transfecção
3.
Plant J ; 47(1): 75-84, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16824181

RESUMO

We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Ascomicetos/fisiologia , Morte Celular/genética , GTP Fosfo-Hidrolases/fisiologia , Envelhecimento/fisiologia , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiologia , Domínio Catalítico , Ciclopentanos , Epistasia Genética , Etilenos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Solanum lycopersicum/microbiologia , Mitocôndrias/metabolismo , Mutação , Oxilipinas , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Ácido Salicílico , Transdução de Sinais
4.
Plant J ; 44(2): 245-57, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16212604

RESUMO

We have identified an Arabidopsis mutant that displays enhanced disease resistance (edr2) to the biotrophic powdery mildew pathogen Erysiphe cichoracearum. Inhibition of fungal growth on edr2 mutant leaves occurred at a late stage of the infection process and coincided with formation of necrotic lesions approximately 5 days after inoculation. Double-mutant analysis revealed that edr2-mediated resistance is suppressed by mutations that inhibit salicylic acid (SA)-induced defense signaling, including npr1, pad4 and sid2, demonstrating that edr2-mediated disease resistance is dependent on SA. However, edr2 showed normal responses to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000. EDR2 appears to be constitutively transcribed in all tissues and organs and encodes a novel protein, consisting of a putative pleckstrin homology (PH) domain and a steroidogenic acute regulatory protein-related lipid-transfer (START) domain, and contains an N-terminal mitochondrial targeting sequence. The PH and START domains are implicated in lipid binding, suggesting that EDR2 may provide a link between lipid signaling and activation of programmed cell death mediated by mitochondria.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Doenças das Plantas , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Teste de Complementação Genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos
5.
Science ; 301(5637): 1230-3, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12947197

RESUMO

Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Genes Bacterianos , Genes de Plantas , Teste de Complementação Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Extratos Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Testes de Precipitina , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA