Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Toxicol Appl Pharmacol ; 288(2): 258-68, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235807

RESUMO

4-Acetylantroquinonol B (4-AAQB), closely related to the better known antroquinonol, is a bioactive isolate of the mycelia of Antrodia camphorata, a Taiwanese mushroom with documented anti-inflammatory, hypoglycemic, vasorelaxative, and recently demonstrated, antiproliferative activity. Based on its traditional use, we hypothesized that 4-AAQB may play an active role in the suppression of cellular transformation, tumor aggression and progression, as well as chemoresistance in colorectal carcinoma (CRC). In this study, we investigated the antiproliferative role of 4-AAQB and its underlying molecular mechanism. We also compared its anticancer therapeutic potential with that of antroquinonol and the CRC combination chemotherapy of choice - folinic acid, fluorouracil and oxaliplatin (FOLFOX). Our results showed that 4-AAQB was most effective in inhibiting tumor proliferation, suppressing tumor growth and attenuating stemness-related chemoresistance. 4-AAQB negatively regulates vital oncogenic and stem cell maintenance signal transduction pathways, including the Lgr5/Wnt/ß-catenin, JAK-STAT, and non-transmembrane receptor tyrosine kinase signaling pathways, as well as inducing a dose-dependent downregulation of ALDH and other stemness related factors. These results were validated in vivo, with animal studies showing 4-AAQB possessed comparable tumor-shrinking ability as FOLFOX and potentiates ability of the later to reduce tumor size. Thus, 4-AAQB, a novel small molecule, projects as a potent therapeutic agent for monotherapy or as a component of standard combination chemotherapy.


Assuntos
4-Butirolactona/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Cicloexanonas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , 4-Butirolactona/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Leucovorina/farmacologia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Compostos Organoplatínicos/farmacologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Fatores de Tempo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Nutr Biochem ; 54: 140-150, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414668

RESUMO

Innate or acquired drug resistance and consequent tumor relapse in lung cancer patients have been linked to activities of cancer stem cells (CSCs). Therefore, targeting CSCs is suggested as an effective approach for non-small cell lung cancer (NSCLC) therapy. In this study, we demonstrated that garcinol, a polyisoprenylated benzophenone isolated from fruiting bodies of Garcinia indica, and possessing anti-inflammatory, antioxidant, acetyltransferase inhibitory, and anticancer activities, modulates activities of lung CSCs (LCSCs) and their associated aggressiveness. Herein, we demonstrated the inhibitory effect of garcinol on the LCSC phenotype of human NSCLC cells using analytical drug cytotoxicity or cell viability, flow cytometric, and functional assay approaches. Garcinol significantly diminished the ability of the H441 and A549 NSCLC cell lines to form spheres. In parallel assays, garcinol inhibited differentiated lung cancer cell and LCSC viability in dose-dependent manners. Consistent with these observations, flow cytometric data showed that garcinol reduced the putative LCSC pool, evidenced by the dose-dependent decreasing proportion of side-population (SP) cells and associated ALDH activity in garcinol-treated H441 cells, compared to the control group. Additionally, functional assays showed that garcinol markedly diminished the ability of H441 and A549 cells to form colonies. Mechanistically, garcinol impaired phosphorylation of LRP6, a co-receptor of Wnt and STAT3. In the same assay, garcinol down-regulated ß-catenin, Dvl2, Axin2, and cyclin D1 expressions in NSCLC-generated spheres, suggesting its ability to regulate the Wnt/ß-catenin signaling pathway. The results were further verified in vivo using H441 LCSC mouse xenograft model where administration of garcinol significantly inhibited tumor growth. Taken together, we demonstrated herein that garcinol modulates the LCSC phenotype via regulation of Wnt/ß-catenin signaling and inactivation of STAT3, thus showing that garcinol may be a putative novel anti-LCSC therapeutic agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Terpenos/farmacologia , Família Aldeído Desidrogenase 1 , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Isoenzimas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
3.
PLoS One ; 10(5): e0125343, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951238

RESUMO

Neuroblastoma (NB) is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2)) or MYCN-non-amplified (SK-N-SH and SK-N-FI) cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2) and SK-N-DZ. Moreover, SK-N-BE(2) spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Neoplásicas/patologia , Neuroblastoma/tratamento farmacológico , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Neuroblastoma/patologia , Prognóstico
4.
Cancer Lett ; 368(1): 36-45, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26184998

RESUMO

PURPOSE: Oral squamous cell carcinoma (OSCC) is a major cause of human mortality globally and radiotherapy is one of the main treatment modalities, however its therapeutic effect is often limited by radioresistance. JARID1B is an epigenetic factor with reported oncogenic potential in various cancer types. We investigated the effect of JARID1B inhibition on migration and invasion of human OSCC cell lines, as well as on clinical patients' outcome. MATERIALS AND METHODS: Wound healing, matrigel invasion, Sulforhodamine B, and spheroid formation assays were used to characterize the signaling pathways of shJARID1B in response to radiation treatment. We evaluated the prognostic relevance of Jarid1b expression in a cohort of 81 OSCC patients. RESULTS: Human OSCC cell lines, including SAS, HSC3, Cal27, TW2.6 and SCC4 cells, were used. shJARID1B cells significantly inhibited migration and invasion ability compared to their vector or wild type counterparts. Silencing shJARID1B significantly inhibited oral cancer stem cell activity and potentiated the tumor-inhibitory activity of radiation therapy in OSCC. Radiotherapy coupled with shJARID1B knockdown reduced mRNA levels of NQO1, KEAP1, NRF2, FOXO1, FOXO3, KLF4, OCT4, CD133, and Nanog in malignant OSCC cells. OSCC spheroid formation ability was markedly reduced in the shJARID1B cells. JARID1B overexpression is a dependent prognostic factor in OSCC patients. CONCLUSIONS: Silencing shJARID1B inhibits migration and invasion of human OSCC, reduces cancer stem cell activities and potentiates tumor-inhibiting radiotherapeutic effects. JARID1B knockdown prior to radiotherapy is a potential effective therapeutic strategy for the treatment of OSCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/genética , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias Bucais/enzimologia , Neoplasias Bucais/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Interferência de RNA , Tolerância a Radiação , Proteínas Repressoras/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Proteínas Nucleares/metabolismo , Prognóstico , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Análise de Sobrevida , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA