Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EMBO J ; 42(7): e108533, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36825437

RESUMO

Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.


Assuntos
Mitocôndrias , Proteínas , Humanos , Células HeLa , Substâncias Macromoleculares/metabolismo , Proteínas/metabolismo , Solventes/metabolismo , Mitocôndrias/metabolismo
2.
Brain ; 145(1): 45-63, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849584

RESUMO

Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.


Assuntos
Complexo I de Transporte de Elétrons , Doença de Leigh , Doenças Mitocondriais , Animais , Complexo I de Transporte de Elétrons/genética , Humanos , Doença de Leigh/genética , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Fosforilação Oxidativa
3.
Bioconjug Chem ; 28(2): 382-389, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27966361

RESUMO

Cell-penetrating peptides (CPPs) enhance the cellular uptake of membrane-impermeable molecules. Most CPPs are highly cationic, potentially increasing the risk of toxic side effects and leading to accumulation in organs such as the liver. As a consequence, there is an unmet need for less cationic CPPs. However, design principles for effective CPPs are still missing. Here, we demonstrate a design principle based on a classification of peptides according to accumulated side-chain polarity and hydrophobicity. We show that in comparison to randomly selected peptides, CPPs cover a distinct parameter space. We designed peptides of only six to nine amino acids with a maximum of three positive charges covering this property space. All peptides were tested for cellular uptake and subcellular distribution. Following an initial round of screening we enriched the collection with short and hydrophobic peptides and introduced d-amino acid substitutions and lactam bridges which increased cell uptake, in particular for long-term incubation. Using a GFP complementation assay, for the most active peptides we demonstrate cytosolic delivery of a biologically active cargo peptide.


Assuntos
Peptídeos Penetradores de Células/química , Citosol/metabolismo , Portadores de Fármacos/química , Desenho de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Sequência de Aminoácidos , Células HeLa , Humanos , Peptídeos/metabolismo , Transporte Proteico
4.
Anal Bioanal Chem ; 408(12): 3177-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26892640

RESUMO

Intracellular proteins comprise numerous peptide motifs that interact with protein-binding domains. However, using sequence information alone, the identification of functionally relevant interaction motifs remains a challenge. Here, we present a microarray-based approach for the evaluation of peptides as protein-binding motifs. To this end, peptides corresponding to protein interaction motifs were spotted as a microarray. First, peptides were titrated with a pan-specific binder and the apparent K(d) value of this binder for each peptide was determined. For phosphotyrosine-containing peptides, an anti-phosphotyrosine antibody was employed. Then, in the presence of the pan-specific binder, arrays were competitively titrated with cell lysate and competition constants were determined. Using the Cheng-Prusoff equation, binding constants for the pan-specific binder and inhibition constants for the lysates were converted into affinity constants for the lysate. We experimentally validate this method using a phosphotyrosine-binding SH2 domain as a further reference. Furthermore, strong binders correlated with binding motifs engaging in numerous interactions as predicted by Scansite. This method provides a highly parallel and robust approach to identify peptides corresponding to interaction motifs with strong binding capacity for proteins in the cell lysate.


Assuntos
Proteínas/metabolismo , Ligação Proteica
5.
Mol Pharmacol ; 88(3): 589-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25972446

RESUMO

The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Técnicas Biossensoriais/tendências
6.
Biochim Biophys Acta ; 1838(12): 3097-106, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25109936

RESUMO

Arginine-rich cell-penetrating peptides (CPP) are widely employed as delivery vehicles for a large variety of macromolecular cargos. As a mechanism-of-action for induction of uptake cross-linking of heparan sulfates and interaction with lipid head groups have been proposed. Here, we employed a multivalent display of the CPP nona-arginine (R9) on a linear dextran scaffold to assess the impact of heparan sulfate and lipid interactions on uptake and membrane perturbation. Increased avidity through multivalency should potentiate molecular phenomena that may only play a minor role if only individual peptides are used. To this point, the impact of multivalency has only been explored for dendrimers, CPP-decorated proteins and nanoparticles. We reasoned that multivalency on a linear scaffold would more faithfully mimic the arrangement of peptides at the membrane at high local peptide concentrations. On average, five R9 were coupled to a linear dextran backbone. The conjugate displayed a direct cytoplasmic uptake similar to free R9 at concentrations higher than 10µM. However, this uptake was accompanied by an increased membrane disturbance and cellular toxicity that was independent of the presence of heparan sulfates. In contrast, for erythrocytes, the multivalent conjugate induced aggregation, however, showed only limited membrane perturbation. Overall, the results demonstrate that multivalency of R9 on a linear scaffold strongly increases the capacity to interact with the plasma membrane. However, the induction of membrane perturbation is a function of the cellular response to peptide binding.

7.
Chembiochem ; 16(4): 602-10, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25663649

RESUMO

In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline-rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N-(2-hydroxypropyl)methacrylamide polymer backbone. When added to GADS-containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross-linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.


Assuntos
Peptídeos/química , Ácidos Polimetacrílicos/química , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/química , Humanos , Células Jurkat , Peptídeos/farmacologia , Ácidos Polimetacrílicos/farmacologia , Prolina/química , Prolina/farmacologia , Domínios de Homologia de src
8.
Angew Chem Int Ed Engl ; 54(50): 15105-8, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26515694

RESUMO

Transfection of cells with a plasmid encoding for the first ten strands of the GFP protein (GFP1-10) provides the means to detect cytosolic peptide import at low micromolar concentrations. Cytosolic import of the eleventh strand of the GFP protein either by electroporation or by cell-penetrating peptide-mediated import leads to formation of the full-length GFP protein and fluorescence. An increase in sensitivity is achieved through structural modifications of the peptide and the expression of GFP1-10 as a fusion protein with mCherry.


Assuntos
Peptídeos Penetradores de Células/análise , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Peptídeos Penetradores de Células/metabolismo , Citosol/química , Fluorescência , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos
9.
Chembiochem ; 15(14): 2037-9, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145328

RESUMO

The design of a brake: Chemical induced dimerisation systems have revolutionised signal transduction research by allowing fast activation of specific proteins. A recent report describes the design of tools that enable the rapid switching off of the induced signal, thereby enabling quantification of signal molecule turnover.


Assuntos
Fosfatidilinositóis/metabolismo , Multimerização Proteica , Transdução de Sinais , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Serina-Treonina Quinases TOR/química
10.
Biochim Biophys Acta Bioenerg ; 1865(2): 149027, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109971

RESUMO

Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRM ≫ CHM2Xros = CMXros = MDR > MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.


Assuntos
Aldeídos , Mitocôndrias , Humanos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Fibroblastos/metabolismo , Compostos Orgânicos
11.
Biophys J ; 104(9): 1875-85, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23663830

RESUMO

Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca(2+) binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca(2+) influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology.


Assuntos
Anexina A4/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Anexina A4/química , Cálcio/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166808, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37454773

RESUMO

Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.


Assuntos
Canais de Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Transporte de Íons , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/metabolismo
13.
BMC Biol ; 9: 32, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21619590

RESUMO

BACKGROUND: Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. RESULTS: In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Gγ2 subunit and a Gαq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. CONCLUSIONS: Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Gγ2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Luminescentes/metabolismo , Receptores Histamínicos H1/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Transferência Ressonante de Energia de Fluorescência/instrumentação , Humanos , Camundongos
14.
Free Radic Biol Med ; 188: 434-446, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718301

RESUMO

Attachment of cargo molecules to lipophilic triphenylphosphonium (TPP+) cations is a widely applied strategy for mitochondrial targeting. We previously demonstrated that the vitamin E-derived antioxidant Trolox increases the levels of active mitochondrial complex I (CI), the first complex of the electron transport chain (ETC), in primary human skin fibroblasts (PHSFs) of Leigh Syndrome (LS) patients with isolated CI deficiency. Primed by this finding, we here studied the cellular effects of mitochondria-targeted Trolox (MitoE10), mitochondria-targeted ubiquinone (MitoQ10) and their mitochondria-targeting moiety decylTPP (C10-TPP+). Chronic treatment (96 h) with these molecules of PHSFs from a healthy subject and an LS patient with isolated CI deficiency (NDUFS7-V122M mutation) did not greatly affect cell number. Unexpectedly, this treatment reduced CI levels/activity, lowered the amount of ETC supercomplexes, inhibited mitochondrial oxygen consumption, increased extracellular acidification, altered mitochondrial morphology and stimulated hydroethidine oxidation. We conclude that the mitochondria-targeting decylTPP moiety is responsible for the observed effects and advocate that every study employing alkylTPP-mediated mitochondrial targeting should routinely include control experiments with the corresponding alkylTPP moiety.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Transporte de Elétrons , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais
15.
Biophys J ; 101(11): 2807-15, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261070

RESUMO

The determination of intracellular protein concentrations is a prerequisite for understanding protein interaction networks in systems biology. Today, protein quantification is based either on mass spectrometry, which requires large cell numbers and sophisticated measurement protocols, or on quantitative Western blotting, which requires the expression and purification of a recombinant protein as a reference. Here, we present a method that uses a transiently expressed fluorescent fusion protein of the protein-of-interest as an easily accessible reference in small volumes of crude cell lysates. The concentration of the fusion protein is determined by fluorescence correlation spectroscopy, and this concentration is used to calibrate the intensity of bands on a Western blot. We applied this method to address cellular protein homeostasis by determining the concentrations of the plasma membrane-located transmembrane scaffolding protein LAT and soluble signaling proteins in naïve T cells and transformed T-cell lymphoma (Jurkat) cells (with the latter having nine times the volume of the former). Strikingly, the protein numbers of soluble proteins scaled with the cell volume, whereas that of the transmembrane protein LAT scaled with the membrane surface. This leads to significantly different stoichiometries of signaling proteins in transformed and naïve cells in concentration ranges that may translate directly into differences in complex formation.


Assuntos
Western Blotting/métodos , Homeostase , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Linfócitos T CD4-Positivos/metabolismo , Calibragem , Proteína Adaptadora GRB2/metabolismo , Humanos , Células Jurkat , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo
16.
Int J Biochem Cell Biol ; 138: 106050, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298163

RESUMO

Classical mitochondrial disease (MD) represents a group of complex metabolic syndromes primarily linked to dysfunction of the mitochondrial ATP-generating oxidative phosphorylation (OXPHOS) system. To date, effective therapies for these diseases are lacking. Here we discuss the ketogenic diet (KD), being a high-fat, moderate protein, and low carbohydrate diet, as a potential intervention strategy. We concisely review the impact of the KD on bioenergetics, ROS/redox metabolism, mitochondrial dynamics and mitophagy. Next, the consequences of the KD in (models of) MD, as well as KD adverse effects, are described. It is concluded that the current experimental evidence suggests that the KD can positively impact on mitochondrial bioenergetics, mitochondrial ROS/redox metabolism and mitochondrial dynamics. However, more information is required on the bioenergetic consequences and mechanistic mode-of-action aspects of the KD at the cellular level and in MD patients.


Assuntos
Dieta Cetogênica/métodos , Metabolismo Energético , Doenças Mitocondriais/dietoterapia , Dinâmica Mitocondrial , Animais , Humanos , Oxirredução
17.
Methods Cell Biol ; 155: 221-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183960

RESUMO

Assessment of the mitochondrial membrane potential (Δψ) in living cells, although not trivial, can be used to estimate mitochondrial bioenergetic state. For this purpose, fluorescent lipophilic cations are broadly applied. These cations enter cells and accumulate primarily in the mitochondrial matrix in a Δψ-dependent manner. Here, we describe the use of the cations tetramethylrhodamine methyl ester (TMRM) and rhodamine 123 (Rhod123) for semi-quantitative Δψ analysis in living mammalian cells. Two different strategies are presented: (1) steady-state measurements that are suited to compare Δψ between different conditions (i.e., for comparing disease states or treatments) and (2) dynamic measurements allowing temporal monitoring of Δψ changes (i.e., to assess the effect of acute perturbations). We discuss the rationale for the use of TMRM and Rhod123 in their non-quenching/redistribution and quenching mode, how these modes are associated with different fluorescence responses, and how data can be interpreted. Practically, three experimental protocols are provided describing the use of TMRM and/or Rhod123 to assess Δψ in primary human skin fibroblasts (PHSFs) and neuron/astrocyte co-cultures by live-cell fluorescence microscopy.


Assuntos
Técnicas Citológicas/métodos , Mamíferos/metabolismo , Potencial da Membrana Mitocondrial , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fluorescência , Humanos , Rodamina 123/metabolismo , Rodaminas/metabolismo , Pele/citologia
18.
Biochim Biophys Acta Biomembr ; 1862(3): 183155, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846645

RESUMO

At concentrations exceeding 10 µM, arginine-rich cell-penetrating peptides (CPPs) trigger a rapid cytoplasmic import that involves activation of acid sphingomyelinase (ASMase). ASMase activation occurs through a variety of stress signals and has also been related to the reorganization of membrane microdomains during entry of pathogens. However, in none of these cases has the initial trigger for ASMase activation been established on a molecular level. We here show that rapid cytosolic CPP import depends upon an increase in intracellular calcium, likely caused by modulation of the Orai1 calcium channel. At low peptide concentration, cytoplasmic import could be induced by thapsigargin, a known activator of Orai1. Compounds known to block Orai1 inhibited rapid uptake. Peptide-mediated modulation of Orai1 involved cell surface sialic acids as inhibition of sialylation as well as chemical blocking of sialic acids reduced rapid cytoplasmic uptake, which could be reconstituted by thapsigargin. These results establish a link between the known propensity of arginine-rich CPPs to interact with the glycocalyx and calcium influx as the initial step triggering direct cytosolic peptide uptake.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cátions/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/fisiologia , Citosol , Células HeLa , Humanos , Proteína ORAI1/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Tapsigargina/farmacologia
19.
Biochim Biophys Acta Bioenerg ; 1861(8): 148213, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32335026

RESUMO

Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4-/- mouse tissues. Ndufs4-/- animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4-/- mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4-/- MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4-/- mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Deleção de Genes , Doença de Leigh/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , NADPH Desidrogenase/metabolismo , Animais , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Doença de Leigh/metabolismo , Camundongos , Fosforilação Oxidativa , Estabilidade Proteica
20.
Antioxid Redox Signal ; 30(18): 2066-2109, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30266077

RESUMO

Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/fisiologia , Animais , Metabolismo Energético , Humanos , Dinâmica Mitocondrial , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA