Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(12): 8056-8065, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37067514

RESUMO

Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética , Cognição , Imageamento por Ressonância Magnética/métodos
2.
Epilepsia ; 64(9): 2484-2498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376741

RESUMO

OBJECTIVE: Social determinants of health, including the effects of neighborhood disadvantage, impact epilepsy prevalence, treatment, and outcomes. This study characterized the association between aberrant white matter connectivity in temporal lobe epilepsy (TLE) and disadvantage using a US census-based neighborhood disadvantage metric, the Area Deprivation Index (ADI), derived from measures of income, education, employment, and housing quality. METHODS: Participants including 74 TLE patients (47 male, mean age = 39.2 years) and 45 healthy controls (27 male, mean age = 31.9 years) from the Epilepsy Connectome Project were classified into ADI-defined low and high disadvantage groups. Graph theoretic metrics were applied to multishell connectome diffusion-weighted imaging (DWI) measurements to derive 162 × 162 structural connectivity matrices (SCMs). The SCMs were harmonized using neuroCombat to account for interscanner differences. Threshold-free network-based statistics were used for analysis, and findings were correlated with ADI quintile metrics. A decrease in cross-sectional area (CSA) indicates reduced white matter integrity. RESULTS: Sex- and age-adjusted CSA in TLE groups was significantly reduced compared to controls regardless of disadvantage status, revealing discrete aberrant white matter tract connectivity abnormalities in addition to apparent differences in graph measures of connectivity and network-based statistics. When comparing broadly defined disadvantaged TLE groups, differences were at trend level. Sensitivity analyses of ADI quintile extremes revealed significantly lower CSA in the most compared to least disadvantaged TLE group. SIGNIFICANCE: Our findings demonstrate (1) the general impact of TLE on DWI connectome status is larger than the association with neighborhood disadvantage; however, (2) neighborhood disadvantage, indexed by ADI, revealed modest relationships with white matter structure and integrity on sensitivity analysis in TLE. Further studies are needed to explore this relationship and determine whether the white matter relationship with ADI is driven by social drift or environmental influences on brain development. Understanding the etiology and course of the disadvantage-brain integrity relationship may serve to inform care, management, and policy for patients.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Substância Branca , Humanos , Masculino , Adulto , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/epidemiologia , Conectoma/métodos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem
3.
Epilepsy Behav ; 142: 109190, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011527

RESUMO

Our study assessed diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) in pediatric subjects with epilepsy secondary to Focal Cortical Dysplasia (FCD) to improve our understanding of structural network changes associated with FCD related epilepsy. We utilized a data harmonization (DH) approach to minimize confounding effects induced by MRI protocol differences. We also assessed correlations between DTI metrics and neurocognitive measures of the fluid reasoning index (FRI), verbal comprehension index (VCI), and visuospatial index (VSI). Data (n = 51) from 23 FCD patients and 28 typically developing controls (TD) scanned clinically on either 1.5T, 3T, or 3T-wide-bore MRI were retrospectively analyzed. Tract-based spatial statistics (TBSS) with threshold-free cluster enhancement and permutation testing with 100,000 permutations were used for statistical analysis. To account for imaging protocol differences, we employed non-parametric data harmonization prior to permutation testing. Our analysis demonstrates that DH effectively removed MRI protocol-based differences typical in clinical acquisitions while preserving group differences in DTI metrics between FCD and TD subjects. Furthermore, DH strengthened the association between DTI metrics and neurocognitive indices. Fractional anisotropy, MD, and RD metrics showed stronger correlation with FRI and VSI than VCI. Our results demonstrate that DH is an integral step to reduce the confounding effect of MRI protocol differences during the analysis of white matter tracts and highlights biological differences between FCD and healthy control subjects. Characterization of white matter changes associated with FCD-related epilepsy may better inform prognosis and treatment approaches.


Assuntos
Epilepsia , Displasia Cortical Focal , Substância Branca , Humanos , Criança , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Estudos Retrospectivos , Anisotropia , Encéfalo/diagnóstico por imagem
4.
Brain Behav ; 14(8): e3643, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39099405

RESUMO

INTRODUCTION: Emerging evidence illustrates that temporal lobe epilepsy (TLE) involves network disruptions represented by hyperexcitability and other seizure-related neural plasticity. However, these associations are not well-characterized. Our study characterizes the whole brain white matter connectome abnormalities in TLE patients compared to healthy controls (HCs) from the prospective Epilepsy Connectome Project study. Furthermore, we assessed whether aberrant white matter connections are differentially related to cognitive impairment and a history of focal-to-bilateral tonic-clonic (FBTC) seizures. METHODS: Multi-shell connectome MRI data were preprocessed using the DESIGNER guidelines. The IIT Destrieux gray matter atlas was used to derive the 162 × 162 structural connectivity matrices (SCMs) using MRTrix3. ComBat data harmonization was applied to harmonize the SCMs from pre- and post-scanner upgrade acquisitions. Threshold-free network-based statistics were used for statistical analysis of the harmonized SCMs. Cognitive impairment status and FBTC seizure status were then correlated with these findings. RESULTS: We employed connectome measurements from 142 subjects, including 92 patients with TLE (36 males, mean age = 40.1 ± 11.7 years) and 50 HCs (25 males, mean age = 32.6 ± 10.2 years). Our analysis revealed overall significant decreases in cross-sectional area (CSA) of the white matter tract in TLE group compared to controls, indicating decreased white matter tract integrity and connectivity abnormalities in addition to apparent differences in graph theoretic measures of connectivity and network-based statistics. Focal and generalized cognitive impaired TLE patients showcased higher trend-level abnormalities in the white matter connectome via decreased CSA than those with no cognitive impairment. Patients with a positive FBTC seizure history also showed trend-level findings of association via decreased CSA. CONCLUSIONS: Widespread global aberrant white matter connectome changes were observed in TLE patients and characterized by seizure history and cognitive impairment, laying a foundation for future studies to expand on and validate the novel biomarkers and further elucidate TLE's impact on brain plasticity.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/patologia , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA