Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cereb Cortex ; 33(12): 8056-8065, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37067514

RESUMO

Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética , Cognição , Imageamento por Ressonância Magnética/métodos
2.
Neuroimage ; 273: 120117, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062373

RESUMO

Maximal grip strength is associated with a variety of health-related outcome measures and thus may be reflective of the efficiency of foundational brain-body communication. Non-human primate models of grip strength strongly implicate the cortical lateral grasping network, but little is known about the translatability of these models to human children. Further, it is unclear how supplementary networks that provide proprioceptive information and cerebellar-based motor command modification are associated with maximal grip strength. Therefore, this study employed high resolution, multi-shell diffusion and quantitative T1 imaging to examine how variations in lateral grasping, proprioception input, and cortico-cerebellar modification network white matter microstructure are associated with variations in grip strength across 70 children. Results indicated that stronger grip strength was associated with higher lateral grasping and proprioception input network fractional anisotropy and R1, indirect measures consistent with stronger microstructural coherence and increased myelination. No relationships were found in the cerebellar modification network. These results provide a neurobiological mechanism of grip behavior in children which suggests that increased myelination of cortical sensory and motor pathways is associated with stronger grip. This neurobiological mechanism may be a signature of pediatric neuro-motor behavior more broadly as evidenced by the previously demonstrated relationships between grip strength and behavioral outcome measures across a variety of clinical and non-clinical populations.


Assuntos
Encéfalo , Substância Branca , Humanos , Criança , Substância Branca/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Força da Mão
3.
Neuroimage ; 277: 120231, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330025

RESUMO

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas
4.
Epilepsia ; 64(9): 2484-2498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376741

RESUMO

OBJECTIVE: Social determinants of health, including the effects of neighborhood disadvantage, impact epilepsy prevalence, treatment, and outcomes. This study characterized the association between aberrant white matter connectivity in temporal lobe epilepsy (TLE) and disadvantage using a US census-based neighborhood disadvantage metric, the Area Deprivation Index (ADI), derived from measures of income, education, employment, and housing quality. METHODS: Participants including 74 TLE patients (47 male, mean age = 39.2 years) and 45 healthy controls (27 male, mean age = 31.9 years) from the Epilepsy Connectome Project were classified into ADI-defined low and high disadvantage groups. Graph theoretic metrics were applied to multishell connectome diffusion-weighted imaging (DWI) measurements to derive 162 × 162 structural connectivity matrices (SCMs). The SCMs were harmonized using neuroCombat to account for interscanner differences. Threshold-free network-based statistics were used for analysis, and findings were correlated with ADI quintile metrics. A decrease in cross-sectional area (CSA) indicates reduced white matter integrity. RESULTS: Sex- and age-adjusted CSA in TLE groups was significantly reduced compared to controls regardless of disadvantage status, revealing discrete aberrant white matter tract connectivity abnormalities in addition to apparent differences in graph measures of connectivity and network-based statistics. When comparing broadly defined disadvantaged TLE groups, differences were at trend level. Sensitivity analyses of ADI quintile extremes revealed significantly lower CSA in the most compared to least disadvantaged TLE group. SIGNIFICANCE: Our findings demonstrate (1) the general impact of TLE on DWI connectome status is larger than the association with neighborhood disadvantage; however, (2) neighborhood disadvantage, indexed by ADI, revealed modest relationships with white matter structure and integrity on sensitivity analysis in TLE. Further studies are needed to explore this relationship and determine whether the white matter relationship with ADI is driven by social drift or environmental influences on brain development. Understanding the etiology and course of the disadvantage-brain integrity relationship may serve to inform care, management, and policy for patients.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Substância Branca , Humanos , Masculino , Adulto , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/epidemiologia , Conectoma/métodos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem
5.
Epilepsy Behav ; 142: 109190, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011527

RESUMO

Our study assessed diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) in pediatric subjects with epilepsy secondary to Focal Cortical Dysplasia (FCD) to improve our understanding of structural network changes associated with FCD related epilepsy. We utilized a data harmonization (DH) approach to minimize confounding effects induced by MRI protocol differences. We also assessed correlations between DTI metrics and neurocognitive measures of the fluid reasoning index (FRI), verbal comprehension index (VCI), and visuospatial index (VSI). Data (n = 51) from 23 FCD patients and 28 typically developing controls (TD) scanned clinically on either 1.5T, 3T, or 3T-wide-bore MRI were retrospectively analyzed. Tract-based spatial statistics (TBSS) with threshold-free cluster enhancement and permutation testing with 100,000 permutations were used for statistical analysis. To account for imaging protocol differences, we employed non-parametric data harmonization prior to permutation testing. Our analysis demonstrates that DH effectively removed MRI protocol-based differences typical in clinical acquisitions while preserving group differences in DTI metrics between FCD and TD subjects. Furthermore, DH strengthened the association between DTI metrics and neurocognitive indices. Fractional anisotropy, MD, and RD metrics showed stronger correlation with FRI and VSI than VCI. Our results demonstrate that DH is an integral step to reduce the confounding effect of MRI protocol differences during the analysis of white matter tracts and highlights biological differences between FCD and healthy control subjects. Characterization of white matter changes associated with FCD-related epilepsy may better inform prognosis and treatment approaches.


Assuntos
Epilepsia , Displasia Cortical Focal , Substância Branca , Humanos , Criança , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Estudos Retrospectivos , Anisotropia , Encéfalo/diagnóstico por imagem
6.
Neuroimage ; 257: 119327, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636227

RESUMO

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Assuntos
Conectoma , Substância Branca , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
Alzheimers Dement ; 18(1): 65-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984184

RESUMO

INTRODUCTION: Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment. METHODS: Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aß)42 /Aß40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4. RESULTS: We observed a significant CSF Aß42 /Aß40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes. DISCUSSION: NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment.


Assuntos
Amiloide/líquido cefalorraquidiano , Córtex Cerebral , Voluntários Saudáveis/estatística & dados numéricos , Neuritos/fisiologia , Sintomas Prodrômicos , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano
8.
Neuroimage ; 236: 118067, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878377

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unknown brain etiology. Our knowledge to date about structural brain development across the lifespan in ASD comes mainly from cross-sectional studies, thereby limiting our understanding of true age effects within individuals with the disorder that can only be gained through longitudinal research. The present study describes FreeSurfer-derived volumetric findings from a longitudinal dataset consisting of 607 T1-weighted magnetic resonance imaging (MRI) scans collected from 105 male individuals with ASD (349 MRIs) and 125 typically developing male controls (258 MRIs). Participants were six to forty-five years of age at their first scan, and were scanned up to 5 times over a period of 16 years (average inter-scan interval of 3.7 years). Atypical age-related volumetric trajectories in ASD included enlarged gray matter volume in early childhood that approached levels of the control group by late childhood, an age-related increase in ventricle volume resulting in enlarged ventricles by early adulthood and reduced corpus callosum age-related volumetric increase resulting in smaller corpus callosum volume in adulthood. Larger corpus callosum volume was related to a lower (better) ADOS score at the most recent study visit for the participants with ASD. These longitudinal findings expand our knowledge of volumetric brain-based abnormalities in males with ASD, and highlight the need to continue to examine brain structure across the lifespan and well into adulthood.


Assuntos
Transtorno do Espectro Autista , Ventrículos Cerebrais , Corpo Caloso , Substância Cinzenta , Desenvolvimento Humano , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/crescimento & desenvolvimento , Ventrículos Cerebrais/patologia , Criança , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Desenvolvimento Humano/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cereb Cortex ; 30(5): 2948-2960, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31833550

RESUMO

In Alzheimer's disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI-but not cortical thickness-was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Espessura Cortical do Cérebro , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Disfunção Cognitiva/psicologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade
10.
Neurocase ; 26(2): 79-90, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100616

RESUMO

Yongey Mingyur Rinpoche (YMR) is a Tibetan Buddhist monk, and renowned meditation practitioner and teacher who has spent an extraordinary number of hours of his life meditating. The brain-aging profile of this expert meditator in comparison to a control population was examined using a machine learning framework, which estimates "brain-age" from brain imaging. YMR's brain-aging rate appeared slower than that of controls suggesting early maturation and delayed aging. At 41 years, his brain resembled that of a 33-year-old. Specific regional changes did not differentiate YMR from controls, suggesting that the brain-aging differences may arise from coordinated changes spread throughout the gray matter.


Assuntos
Envelhecimento/fisiologia , Budismo , Substância Cinzenta/anatomia & histologia , Meditação , Monges , Neuroimagem/métodos , Adulto , Fatores Etários , Idoso , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
11.
Hum Brain Mapp ; 39(10): 4150-4161, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29952102

RESUMO

Postmortem studies of Parkinson's disease (PD) suggest that Lewy body pathology accumulates in a predictable topographical sequence, beginning in the olfactory bulb, followed by caudal brainstem, substantia nigra, limbic cortex, and neocortex. Diffusion-weighted imaging (DWI) is sensitive, if not specific, to early disease-related white matter (WM) change in a variety of traumatic and degenerative brain diseases. Although numerous cross-sectional studies have reported DWI differences in cerebral WM in PD, only a few longitudinal studies have investigated whether DWI change exceeds that of normal aging or coincides with regional Lewy body accumulation. This study mapped regional differences in the rate of DWI-based microstructural change between 29 PD patients and 43 age-matched controls over 18 months. Iterative within- and between-subject tensor-based registration was completed on motion- and eddy current-corrected DWI images, then baseline versus follow-up difference maps of fractional anisotropy, mean, radial, and axial diffusivity were analyzed in the Biological Parametric Mapping toolbox for MATLAB. This analysis showed that PD patients had a greater decline in WM integrity in the rostral brainstem, caudal subcortical WM, and cerebellar peduncles, compared with controls. In addition, patients with unilateral clinical signs at baseline experienced a greater rate of WM change over the 18-month study than patients with bilateral signs. These findings suggest that rate of WM microstructural change in PD exceeds that of normal aging and is maximal during early stage disease. In addition, the neuroanatomic locations (rostral brainstem and subcortical WM) of accelerated WM change fit with current theories of topographic disease progression.


Assuntos
Envelhecimento/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Progressão da Doença , Doença de Parkinson/patologia , Substância Branca/patologia , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Índice de Gravidade de Doença , Substância Branca/diagnóstico por imagem
12.
J Comput Assist Tomogr ; 42(2): 306-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28937489

RESUMO

OBJECTIVE: We present a registration-based semiautomatic mandible segmentation (SAMS) pipeline designed to process a large number of computed tomography studies to segment 3-dimensional mandibles. METHOD: The pipeline consists of a manual preprocessing step, an automatic segmentation step, and a final manual postprocessing step. The automatic portion uses a nonlinear diffeomorphic method to register each preprocessed input computed tomography test scan on 54 reference templates, ranging in age from birth to 19 years. This creates 54 segmentations, which are then combined into a single composite mandible. RESULTS: This pipeline was assessed using 20 mandibles from computed tomography studies with ages 1 to 19 years, segmented using both SAMS-processing and manual segmentation. Comparisons between the SAMS-processed and manually-segmented mandibles revealed 97% similarity agreement with comparable volumes. The resulting 3-dimensional mandibles were further enhanced with manual postprocessing in specific regions. CONCLUSIONS: Findings are indicative of a robust pipeline that reduces manual segmentation time by 75% and increases the feasibility of large-scale mandibular growth studies.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Mandíbula/diagnóstico por imagem , Mandíbula/crescimento & desenvolvimento , Modelos Anatômicos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Reprodutibilidade dos Testes , Adulto Jovem
13.
Neuroimage ; 132: 225-237, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908314

RESUMO

Optimal myelination of neuronal axons is essential for effective brain and cognitive function. The ratio of the axon diameter to the outer fiber diameter, known as the g-ratio, is a reliable measure to assess axonal myelination and is an important index reflecting the efficiency and maximal conduction velocity of white matter pathways. Although advanced neuroimaging techniques including multicomponent relaxometry (MCR) and diffusion tensor imaging afford insight into the microstructural characteristics of brain tissue, by themselves they do not allow direct analysis of the myelin g-ratio. Here, we show that by combining myelin content information (obtained with mcDESPOT MCR) with neurite density information (obtained through NODDI diffusion imaging) an index of the myelin g-ratio may be estimated. Using this framework, we present the first quantitative study of myelin g-ratio index changes across childhood, examining 18 typically developing children 3months to 7.5years of age. We report a spatio-temporal pattern of maturation that is consistent with histological and developmental MRI studies, as well as theoretical studies of the myelin g-ratio. This work represents the first ever in vivo visualization of the evolution of white matter g-ratio indices throughout early childhood.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina , Criança , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Imageamento por Ressonância Magnética , Masculino , Substância Branca/anatomia & histologia
14.
J Int Neuropsychol Soc ; 22(2): 191-204, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26888616

RESUMO

OBJECTIVES: The purpose of this study was to assess whether age-related differences in white matter microstructure are associated with altered task-related connectivity during episodic recognition. METHODS: Using functional magnetic resonance imaging and diffusion tensor imaging from 282 cognitively healthy middle-to-late aged adults enrolled in the Wisconsin Registry for Alzheimer's Prevention, we investigated whether fractional anisotropy (FA) within white matter regions known to decline with age was associated with task-related connectivity within the recognition network. RESULTS: There was a positive relationship between fornix FA and memory performance, both of which negatively correlated with age. Psychophysiological interaction analyses revealed that higher fornix FA was associated with increased task-related connectivity amongst the hippocampus, caudate, precuneus, middle occipital gyrus, and middle frontal gyrus. In addition, better task performance was associated with increased task-related connectivity between the posterior cingulate gyrus, middle frontal gyrus, cuneus, and hippocampus. CONCLUSIONS: The findings indicate that age has a negative effect on white matter microstructure, which in turn has a negative impact on memory performance. However, fornix microstructure did not significantly mediate the effect of age on performance. Of interest, dynamic functional connectivity was associated with better memory performance. The results of the psychophysiological interaction analysis further revealed that alterations in fornix microstructure explain-at least in part-connectivity among cortical regions in the recognition memory network. Our results may further elucidate the relationship between structural connectivity, neural function, and cognition.


Assuntos
Mapeamento Encefálico , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Memória Episódica , Vias Neurais/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Fatores Etários , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Estimulação Luminosa , Estatística como Assunto , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
15.
Neuroimage ; 118: 103-17, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26025289

RESUMO

There is significant interest, both from basic and applied research perspectives, in understanding how structural/functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity information as a graph; then, one may perform statistical inference on various 'global' graph theoretic summary measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls) have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs derived from neuroimaging data. At the high level, the method occupies the middle ground between the two contrasts - that is, to analyze global graph summary measures (global) or connectivity strengths or correlations for individual edges similar to voxel based analysis (local). Instead, our strategy derives a Wavelet representation at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a tractography routine. We first present results showing significant connectivity differences between AD patients and controls that were not evident using standard approaches. Later, we show results on populations that are not diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying potentially subtle differences between patient groups. We also give an easy to deploy open source implementation of the algorithm for use within studies of connectivity in AD and other neurodegenerative disorders.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Diagnóstico por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Idoso , Algoritmos , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos
16.
Int J Comput Vis ; 112(3): 319-341, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26052182

RESUMO

We consider a problem of finding maximum weight subgraphs (MWS) that satisfy hard constraints in a weighted graph. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., pairs of nodes that cannot belong to the same solution. Our main contribution is a novel inference approach for solving this problem in a sequential monte carlo (SMC) sampling framework. Usually in an SMC framework there is a natural ordering of the states of the samples. The order typically depends on observations about the states or on the annealing setup used. In many applications (e.g., image jigsaw puzzle problems), all observations (e.g., puzzle pieces) are given at once and it is hard to define a natural ordering. Therefore, we relax the assumption of having ordered observations about states and propose a novel SMC algorithm for obtaining maximum a posteriori estimate of a high-dimensional posterior distribution. This is achieved by exploring different orders of states and selecting the most informative permutations in each step of the sampling. Our experimental results demonstrate that the proposed inference framework significantly outperforms loopy belief propagation in solving the image jigsaw puzzle problem. In particular, our inference quadruples the accuracy of the puzzle assembly compared to that of loopy belief propagation.

17.
Front Neurosci ; 18: 1210939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356645

RESUMO

Introduction: Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system. To date, no studies have demonstrated similarities between morphological brain changes seen in IBD and brain morphometry observed in older healthy controls.. Methods: For the present study, twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected for a different study under a similar MR protocol, were analyzed as controls. T1 weighted images and structural image processing techniques were used to extract surface-based brain measures, to test our hypothesis that young CDs have different brain surface morphometry than their age-matched young HCs and furthermore, appear more similar to older HCs. The phonemic verbal fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 1976) was administered to test verbal cognitive ability and executive control. Results/Discussion: On the whole, CDs had more brain regions with differences in brain morphometry measures when compared to the young HCs as compared to the old HCs, suggesting that CD has an effect on the brain that makes it appear more similar to old HCs. Additionally, our study demonstrates this atypical brain morphometry is associated with function on a cognitive task. These results suggest that even younger CDs may be showing some evidence of structural brain changes that demonstrate increased resemblance to older HC brains rather than their similarly aged healthy counterparts.

18.
Front Integr Neurosci ; 18: 1359099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808069

RESUMO

Introduction: Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism. Methods: Using high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6-11 years-old). Results: In both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features. Discussion: Together, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead to stronger grip in children with more ADHD features, weaker grip in children with fewer ADHD features, and no difference in grip in non-autistic children. While future research is needed to understand if these findings extend to other motor tasks beyond grip strength, these results have implications for understanding the biological basis of neuromotor control in autistic children and emphasize the importance of assessing co-occurring conditions when evaluating brain-behavior relationships in autism.

19.
Autism Res ; 17(2): 266-279, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278763

RESUMO

Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9 years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9 years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Criança , Humanos , Adolescente , Transtorno Autístico/diagnóstico por imagem , Nociceptividade , Tronco Encefálico/diagnóstico por imagem , Formação Reticular
20.
Front Psychiatry ; 15: 1355998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505799

RESUMO

Introduction: A greater sense of purpose in life is associated with several health benefits relevant for active aging, but the mechanisms remain unclear. We evaluated if purpose in life was associated with indices of brain health. Methods: We examined data from the Midlife in the United States (MIDUS) Neuroscience Project. Diffusion weighted magnetic resonance imaging data (n=138; mean age 65.2 years, age range 48-95; 80 females; 37 black, indigenous, and people of color) were used to estimate microstructural indices of brain health such as axonal density, and axonal orientation. The seven-item purpose in life scale was used. Permutation analysis of linear models was used to examine associations between purpose in life scores and the diffusion metrics in white matter and in the bilateral hippocampus, adjusting for age, sex, education, and race. Results and discussion: Greater sense of purpose in life was associated with brain microstructural features consistent with better brain health. Positive associations were found in both white matter and the right hippocampus, where multiple convergent associations were detected. The hippocampus is a brain structure involved in learning and memory that is vulnerable to stress but retains the capacity to grow and adapt through old age. Our findings suggest pathways through which an enhanced sense of purpose in life may contribute to better brain health and promote healthy aging. Since purpose in life is known to decline with age, interventions and policy changes that facilitate a greater sense of purpose may extend and improve the brain health of individuals and thus improve public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA