Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Phylogenet Evol ; 186: 107838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286063

RESUMO

The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red + blue + orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.


Assuntos
Genoma Mitocondrial , Mitocôndrias , Humanos , Animais , Filogenia , Mitocôndrias/genética , Especiação Genética , Caramujos/genética , DNA Mitocondrial/genética
2.
Molecules ; 28(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241815

RESUMO

The emergence of multiresistant bacteria and the shortage of antibacterials in the drug pipeline creates the need to search for novel agents. Evolution drives the optimization of the structure of marine natural products to act as antibacterial agents. Polyketides are a vast and structurally diverse family of compounds that have been isolated from different marine microorganisms. Within the different polyketides, benzophenones, diphenyl ethers, anthraquinones, and xanthones have shown promising antibacterial activity. In this work, a dataset of 246 marine polyketides has been identified. In order to characterize the chemical space occupied by these marine polyketides, molecular descriptors and fingerprints were calculated. Molecular descriptors were analyzed according to the scaffold, and principal component analysis was performed to identify the relationships among the different descriptors. Generally, the identified marine polyketides are unsaturated, water-insoluble compounds. Among the different polyketides, diphenyl ethers tend to be more lipophilic and non-polar than the remaining classes. Molecular fingerprints were used to group the polyketides according to their molecular similarity into clusters. A total of 76 clusters were obtained, with a loose threshold for the Butina clustering algorithm, highlighting the large structural diversity of the marine polyketides. The large structural diversity was also evidenced by the visualization trees map assembled using the tree map (TMAP) unsupervised machine-learning method. The available antibacterial activity data were examined in terms of bacterial strains, and the activity data were used to rank the compounds according to their antibacterial potential. This potential ranking was used to identify the most promising compounds (four compounds) which can inspire the development of new structural analogs with better potency and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.


Assuntos
Policetídeos , Xantonas , Xantonas/química , Benzofenonas/química , Antraquinonas , Éteres Fenílicos , Antibacterianos/química , Policetídeos/química
3.
Mar Drugs ; 20(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049913

RESUMO

The marine environment is an important source of specialized metabolites with valuable biological activities. Xanthones are a relevant chemical class of specialized metabolites found in this environment due to their structural variety and their biological activities. In this work, a comprehensive literature review of marine xanthones reported up to now was performed. A large number of bioactive xanthone derivatives (169) were identified, and their structures, biological activities, and natural sources were described. To characterize the chemical space occupied by marine-derived xanthones, molecular descriptors were calculated. For the analysis of the molecular descriptors, the xanthone derivatives were grouped into five structural categories (simple, prenylated, O-heterocyclic, complex, and hydroxanthones) and six biological activities (antitumor, antibacterial, antidiabetic, antifungal, antiviral, and miscellaneous). Moreover, the natural product-likeness and the drug-likeness of marine xanthones were also assessed. Marine xanthone derivatives are rewarding bioactive compounds and constitute a promising starting point for the design of other novel bioactive molecules.


Assuntos
Xantonas/química , Animais , Organismos Aquáticos , Desenho de Fármacos , Relação Estrutura-Atividade
4.
Proc Biol Sci ; 287(1929): 20200794, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32546094

RESUMO

The transcriptomes of the venom glands of 13 closely related species of vermivorous cones endemic to West Africa from genera Africonus and Varioconus were sequenced and venom repertoires compared within a phylogenetic framework using one Kalloconus species as outgroup. The total number of conotoxin precursors per species varied between 108 and 221. Individuals of the same species shared about one-fourth of the total conotoxin precursors. The number of common sequences was drastically reduced in the pairwise comparisons between closely related species, and the phylogenetical signal was totally eroded at the inter-generic level (no sequence was identified as shared derived), due to the intrinsic high variability of these secreted peptides. A common set of four conotoxin precursor superfamilies (T, O1, O2 and M) was expanded in all studied cone species, and thus, they are considered the basic venom toolkit for hunting and defense in the West African vermivorous cone snails. Maximum-likelihood ancestral character reconstructions inferred shared conotoxin precursors preferentially at internal nodes close to the tips of the phylogeny (between individuals and between closely related species) as well as in the common ancestor of Varioconus. Besides the common toolkit, the two genera showed significantly distinct catalogues of conotoxin precursors in terms of type of superfamilies present and the abundance of members per superfamily, but had similar relative expression levels indicating functional convergence. Differential expression comparisons between vermivorous and piscivorous cones highlighted the importance of the A and S superfamilies for fish hunting and defense.


Assuntos
Conotoxinas/genética , Caramujo Conus , Peçonhas/genética , África Ocidental , Animais , Biologia Computacional , Transcriptoma
5.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322077

RESUMO

Microtubule-targeting agents (MTAs) remain a gold standard for the treatment of several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic arrest followed by cell death. This antimitotic activity of MTAs is dependent on the spindle assembly checkpoint (SAC), which monitors the integrity of the mitotic spindle and proper chromosome attachments to microtubules in order to ensure accurate chromosome segregation and timely anaphase onset. However, the cytotoxic activity of MTAs is restrained by drug resistance and/or toxicities, and had motivated the search for new compounds and/or alternative therapeutic strategies. Here, we describe the synthesis and mechanism of action of the xanthone derivative pyranoxanthone 2 that exhibits a potent anti-growth activity against cancer cells. We found that cancer cells treated with the pyranoxanthone 2 exhibited persistent defects in chromosome congression during mitosis that were not corrected over time, which induced a prolonged SAC-dependent mitotic arrest followed by massive apoptosis. Importantly, pyranoxanthone 2 was able to potentiate apoptosis of cancer cells treated with nanomolar concentrations of paclitaxel. Our data identified the potential of the pyranoxanthone 2 as a new potent antimitotic with promising antitumor potential, either alone or in combination regimens.


Assuntos
Antimitóticos/química , Antimitóticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Piranos/química , Xantonas/química , Xantonas/farmacologia , Antimitóticos/síntese química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Técnicas de Química Sintética , Aberrações Cromossômicas/efeitos dos fármacos , Imunofluorescência , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Estrutura Molecular , Paclitaxel/farmacologia
6.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634698

RESUMO

Marine organisms represent almost half of total biodiversity and are a very important source of new bioactive substances. Within the varied biological activities found in marine products, their antimicrobial activity is one of the most relevant. Infectious diseases are responsible for high levels of morbidity and mortality and many antimicrobials lose their effectiveness with time due to the development of resistance. These facts justify the high importance of finding new, effective and safe anti-infective agents. Among the variety of biological activities of marine xanthone derivatives, one that must be highlighted is their anti-infective properties. In this work, a literature review of marine xanthones with anti-infective activity, namely antibacterial, antifungal, antiparasitic and antiviral, is presented. Their structures, biological activity, sources and the methods used for bioactivity evaluation are described. The xanthone derivatives are grouped in three sets: xanthones, hydroxanthones and glycosylated derivatives. Moreover, molecular descriptors, biophysico-chemical properties, and pharmacokinetic parameters were calculated, and the chemical space occupied by marine xanthone derivatives is recognized. The chemical space was compared with marketed drugs and framed accordingly to the drug-likeness concept in order to profile the pharmacokinetic of anti-infective marine xanthone derivatives.


Assuntos
Anti-Infecciosos/farmacologia , Organismos Aquáticos/química , Xantonas/química , Xantonas/farmacologia , Animais , Anti-Infecciosos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Desenho de Fármacos , Humanos , Estrutura Molecular
7.
BMC Evol Biol ; 17(1): 231, 2017 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178825

RESUMO

BACKGROUND: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. RESULTS: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. CONCLUSIONS: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.


Assuntos
Genoma Mitocondrial , Filogenia , Caramujos/classificação , Caramujos/genética , Animais , Sequência de Bases , Cabo Verde , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA , Especificidade da Espécie
8.
Mol Phylogenet Evol ; 112: 79-87, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450228

RESUMO

Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences.


Assuntos
Genoma Mitocondrial , Caramujos/classificação , Caramujos/genética , África Ocidental , Animais , Sequência de Bases , Variação Genética , Filogenia , Senegal , Espanha
9.
Hum Psychopharmacol ; 32(3)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28657190

RESUMO

OBJECTIVE: "Krokodil" is the street name for an impure homemade drug mixture used as a cheap substitute for heroin, containing desomorphine as the main opioid. Abscesses, gangrene, thrombophlebitis, limb ulceration and amputations, jaw osteonecrosis, skin discoloration, ulcers, skin infections, and bleeding are some of the typical reported signs in humans. This study aimed to understand the toxicity of krokodil using Wistar male rats as experimental model. METHODS: Animals were divided into seven groups and exposed subcutaneously to NaCl 0.9% (control), krokodil mixture free of psychotropic substances (blank krokodil), pharmaceutical grade desomorphine 1 mg/kg, and four different concentrations of krokodil (containing 0.125, 0.25, 0.5, and 1 mg/kg of desomorphine) synthesized accordingly to a "domestic" protocol followed by people who inject krokodil (PWIK). Daily injections for five consecutive days were performed, and animals were sacrificed 24 hr after the last administration. Biochemical and histological analysis were carried out. RESULTS: It was shown that the continuous use of krokodil may cause injury at the injection area, with formation of necrotic zones. The biochemical results evidenced alterations on cardiac and renal biomarkers of toxicity, namely, creatine kinase, creatine kinase-MB, and uric acid. Significant alteration in levels of reduced and oxidized glutathione on kidney and heart suggested that oxidative stress may be involved in krokodil-mediated toxicity. Cardiac congestion was the most relevant finding of continuous krokodil administration. CONCLUSIONS: These findings contribute notably to comprehension of the local and systemic toxicological impact of this complex drug mixture on major organs and will hopefully be useful for the development of appropriate treatment strategies towards the human toxicological effects of krokodil.


Assuntos
Analgésicos Opioides/toxicidade , Codeína/análogos & derivados , Coração/efeitos dos fármacos , Drogas Ilícitas/toxicidade , Rim/efeitos dos fármacos , Dermatopatias/induzido quimicamente , Analgésicos Opioides/administração & dosagem , Animais , Codeína/administração & dosagem , Codeína/toxicidade , Humanos , Injeções Subcutâneas , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Necrose/induzido quimicamente , Necrose/patologia , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Dermatopatias/patologia , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
10.
Appl Microbiol Biotechnol ; 98(4): 1893-905, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23949994

RESUMO

A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of the genus Rhodococcus. Strain S2 was able to mineralize 4-FCA as sole carbon and energy source. In the presence of a conventional carbon source (sodium acetate [SA]), growth rate of strain S2 was enhanced from 0.04 to 0.14 h(-1) when the culture medium was fed with 0.5 mM of 4-FCA, and the time for complete removal of 4-FCA decreased from 216 to 50 h. When grown in SA-supplemented medium, 4-FCA concentrations up to 1 mM did not affect the length of the lag phase, and for 4-FCA concentrations up to 3 mM, strain S2 was able to completely remove the target fluorinated compound. 4-Fluorobenzoate (4-FBA) was transiently formed in the culture medium, reaching concentrations up to 1.7 mM when the cultures were supplemented with 3.5 mM of 4-FCA. Trans,trans-muconate was also transiently formed as a metabolic intermediate. Compounds with molecular mass compatible with 3-carboxymuconate and 3-oxoadipate were also detected in the culture medium. Strain S2 was able to mineralize a range of other haloorganic compounds, including 2-fluorophenol, to which the biofilm reactor had been exposed. To our knowledge, this is the first time that mineralization of 4-FCA as the sole carbon source by a single bacterial culture is reported.


Assuntos
Cinamatos/metabolismo , Rhodococcus/metabolismo , Biofilmes , Reatores Biológicos/microbiologia
11.
Bioorg Med Chem ; 21(11): 2941-59, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623253

RESUMO

A promising antitumor xanthone derivative was optimized following a multidimensional approach that involved the synthesis of 17 analogues, the study of their lipophilicity and solubility, and the evaluation of their growth inhibitory activity on four human tumor cell lines. A new synthetic route for the hit xanthone derivative was also developed and applied for the synthesis of its analogues. Among the used cell lines, the HL-60 showed to be in general more sensitive to the compounds tested, with the most potent compound having a GI50 of 5.1 µM, lower than the hit compound. Lipophilicity was evaluated by the partition coefficient (K(p)) of a solute between buffer and two membrane models, namely liposomes and micelles. The compounds showed a logK(p) between 3 and 5 and the two membrane models showed a good correlation (r(2)=0.916) between each other. Studies concerning relationship between solubility and structure were developed for the hit compound and 5 of its analogues.


Assuntos
Antineoplásicos/síntese química , Xantonas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Cinética , Lipossomos/química , Micelas , Especificidade de Órgãos , Solubilidade , Relação Estrutura-Atividade , Xantonas/química , Xantonas/farmacologia
12.
Biodegradation ; 24(2): 245-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22842857

RESUMO

Organic and metallic pollutants are ubiquitous in the environment. Many metals are reported to be toxic to microorganisms and to inhibit biodegradation. The effect of the metals iron, copper and silver on the metabolism of Labrys portucalensis F11 and on fluorobenzene (FB) biodegradation was examined. The results indicate that the addition of 1 mM of Fe(2+) to the culture medium has a positive effect on bacterial growth and has no impact in the biodegradation of 1 and 2 mM of FB. The presence of 1 mM of Cu(2+) was found to strongly inhibit the growth of F11 cultures and to reduce the biodegradation of 1 and 2 mM of FB to ca. 50 %, with 80 % of stoichiometrically expected fluoride released. In the experiments with resting cells, the FB degraded (from 2 mM supplied) was reduced ca. 20 % whereas the fluoride released was reduced to 45 % of that stoichiometrically expected. Ag(+) was the most potent inhibitor of FB degradation. In experiments with growing cells, the addition of 1 mM of Ag(+) to the culture medium containing 1 and 2 mM of FB resulted in no fluoride release, whereas FB degradation was only one third of that observed in control cultures. In the experiments with resting cells, the addition of Ag(+) resulted in 25 % reduction in substrate degradation and fluoride release was only 20 % of that stoichiometrically expected. The accumulation of catechol and 4-fluorocatechol in cultures supplemented with Cu(2+) or Ag(+) suggest inhibition of the key enzyme of FB metabolism-catechol 1,2-dioxygenase.


Assuntos
Alphaproteobacteria/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Catecóis/metabolismo , Cobre/farmacologia , Ferro/farmacologia , Prata/farmacologia , Alphaproteobacteria/efeitos dos fármacos
13.
Ecotoxicol Environ Saf ; 87: 108-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131609

RESUMO

Biodegradation of chiral pharmaceuticals in the environment can be enantioselective. Thus quantification of enantiomeric fractions during the biodegradation process is crucial for assessing the fate of chiral pollutants. This work presents the biodegradation of alprenolol and propranolol using an activated sludge inoculum, monitored by a validated enantioselective HPLC method with fluorescence detection. The enantioseparation was optimized using a vancomycin-based chiral stationary phase under polar ionic mode. The method was validated using a minimal salts medium inoculated with activated sludge as matrix. The method was selective and linear in the range of 10-800 ng/ml, with a R²>0.99. The accuracy ranged from 85.0 percent to 103 percent, the recovery ranged from 79.9 percent to 103 percent, and the precision measured by the relative standard deviation (RSD) was <7.18 percent for intra-batch and <5.39 percent for inter-batch assays. The limits of quantification and detection for all enantiomers were 10 ng/ml and 2.5 ng/ml, respectively. The method was successfully applied to follow the biodegradation of the target pharmaceuticals using an activated sludge inoculum during a fifteen days assay. The results indicated slightly higher biodegradation rates for the S-enantiomeric forms of both beta-blockers. The presence of another carbon source maintained the enantioselective degradation pattern while enhancing biodegradation extent up to fourteen percent.


Assuntos
Antagonistas Adrenérgicos beta/metabolismo , Alprenolol/metabolismo , Propranolol/metabolismo , Esgotos/microbiologia , Antagonistas Adrenérgicos beta/química , Alprenolol/química , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Propranolol/química , Estereoisomerismo
14.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37776364

RESUMO

BACKGROUND: Genomes are powerful resources to understand the evolutionary mechanisms underpinning the origin and diversification of the venoms of cone snails (Conidae: Caenogastropoda) and could aid in the development of novel drugs. FINDINGS: Here, we used PacBio continuous long reads and Omni-C data to assemble the chromosome-level genome of Kalloconus canariensis, a vermivorous cone endemic to the Canary Islands. The final genome size was 2.87 Gb, with a N50 of 79.75 Mb and 91% of the reads located into the 35 largest scaffolds. Up to 55.80% of the genome was annotated as repetitive regions, being class I of transposable elements (16.65%) predominant. The annotation estimated 34,287 gene models. Comparative analysis of this genome with the 2 cone snail genomes released to date (Dendroconus betulinus and Lautoconus ventricosus) revealed similar genome sizes and organization, although chromosome sizes tended to be shorter in K. canariensis. Phylogenetic relationships within subclass Caenogastropoda were recovered with strong statistical support. The family Conidae was recovered as a clade, with K. canariensis plus L. ventricosus sister to D. betulinus. CONCLUSIONS: Despite the great diversity of cone snails (>900 species) and their venoms (hundreds of peptides per species), only 2 recently reported genomes are available for the group. The high-quality chromosome-level assembly of K. canariensis will be a valuable reference for studying the origin and evolution of conotoxin genes as well as whole-genome duplication events during gastropod evolution.


Assuntos
Genômica , Peçonhas , Animais , Filogenia , Cromossomos/genética , Caramujos/genética
15.
Gigascience ; 10(5)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34037232

RESUMO

BACKGROUND: Venoms are deadly weapons to subdue prey or deter predators that have evolved independently in many animal lineages. The genomes of venomous animals are essential to understand the evolutionary mechanisms involved in the origin and diversification of venoms. RESULTS: Here, we report the chromosome-level genome of the venomous Mediterranean cone snail, Lautoconus ventricosus (Caenogastropoda: Conidae). The total size of the assembly is 3.59 Gb; it has high contiguity (N50 = 93.53 Mb) and 86.6 Mb of the genome assembled into the 35 largest scaffolds or pseudochromosomes. On the basis of venom gland transcriptomes, we annotated 262 complete genes encoding conotoxin precursors, hormones, and other venom-related proteins. These genes were scattered in the different pseudochromosomes and located within repetitive regions. The genes encoding conotoxin precursors were normally structured into 3 exons, which did not necessarily coincide with the 3 structural domains of the corresponding proteins. Additionally, we found evidence in the L. ventricosus genome for a past whole-genome duplication event by means of conserved gene synteny with the Pomacea canaliculata genome, the only one available at the chromosome level within Caenogastropoda. The whole-genome duplication event was further confirmed by the presence of a duplicated hox gene cluster. Key genes for gastropod biology including those encoding proteins related to development, shell formation, and sex were located in the genome. CONCLUSIONS: The new high-quality L. ventricosus genome should become a reference for assembling and analyzing new gastropod genomes and will contribute to future evolutionary genomic studies among venomous animals.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/genética , Genoma , Caramujos/genética , Peçonhas
16.
J Environ Sci Health B ; 45(4): 265-73, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20390962

RESUMO

This work aimed at studying the biodegradation of two estrogens, 17alpha -estradiol (E2) and 17beta -ethinylestradiol (EE2), and their potential metabolism to estrone (E1) by microbial consortia. The biodegradation studies were followed by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) using a specifically developed and validated method. Biodegradation studies of the estrogens (E2 and EE2) were carried out with activated sludge (consortium A, CA) obtained from a Wastewater Treatment Plant (WWTP) and with a microbial consortium able to degrade recalcitrant compounds, namely fluorobenzene (consortium B, CB). E2 was more extensively degraded than EE2 by CA whereas CB was only able to degrade E2. The addition of acetate as a supplementary carbon source led to a faster biodegradation of E2 and EE2. E1 was detected as a metabolite only during the degradation of E2. The 16S rRNA gene sequence analyses of strains recovered from the degrading cultures revealed the presence of the genera Pseudomonas, Chryseobacterium and Alcaligenes. The genera Pseudomonas and Chryseobacterium were retrieved from cultures supplied with E2 and EE2, while the genus Alcaligenes was found in the presence of E2, suggesting that they might be involved in the degradation of these compounds.


Assuntos
Estradiol/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Bacilos e Cocos Aeróbios Gram-Negativos/metabolismo , Esgotos/microbiologia , Alcaligenes/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Chryseobacterium/metabolismo , Estrona/metabolismo , Sphingobacterium/metabolismo
17.
Int J Biol Macromol ; 158: 180-188, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32360466

RESUMO

Considering the potential of mucoadhesive properties of nanoparticles in oral delivery, this work describes the preparation and characterization of fucoidan/chitosan nanoparticles loaded with methotrexate (MTX) intended to lung cancer therapy. The nanoparticles were produced and characterized in terms of size, surface charge, entrapment efficiency, and morphology. The size of the developed nanoparticles was around 300 nm, the zeta potential value was negative (ca. -30 mV), revealing a low tendency to aggregate. The self-assembled fucoidan/chitosan nanoparticles were stable at acidic pH (1.6-5.2), without disintegration under pH 6-7.4, revealing resistance through the gastrointestinal tract, and were found to be mucoadhesive suggesting ability to enhance drug oral bioavailability. Lung cancer cells quickly internalized the developed nanoparticles. Moreover, MTX-loaded fucoidan/chitosan nanoparticles up to 245 µg mL-1 in polymer equivalent to 23.5 µg mL-1 of MTX were safe towards fibroblasts but hampered lung cancer cell proliferation mediated by an apoptotic process. MTX-loaded nanoparticles were 7-fold more effective in inhibiting lung cancer cells proliferation than the free drug, showing the potential of fucoidan-chitosan nanoparticles to improve the cytotoxicity of free methotrexate on A549 lung cancer cells. These results also demonstrate that fucoidan/chitosan nanoparticles may provide a suitable platform for poor-water soluble compounds' oral delivery.

18.
ChemMedChem ; 15(9): 749-755, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162478

RESUMO

Natural products have always been an important source of new hits and leads in drug discovery, with the marine environment being regarded as a significant source of novel and exquisite bioactive compounds. Yicathins B and C are two marine-derived xanthones that have shown antibacterial and antifungal activity. Herein, the total synthesis of these yicathins and six novel analogues is reported for the first time. As marine natural products tend to have very lipophilic scaffolds, the lipophilicity of yicathins and their analogues was evaluated in the classical octanol/water system and a biomimetic model-based system. As the xanthonic nucleus is a "privileged structure", other biological activities were evaluated, namely antitumor and anti-inflammatory activities. An interesting anti-inflammatory activity was identified for yicathin analogues that paves the way for the design of dual activity (anti-infective and anti-inflammatory) marine-inspired xanthone derivatives.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Estereoisomerismo
19.
J Chromatogr Sci ; 46(6): 472-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18647465

RESUMO

A rapid and simple high-performance liquid chromatographic method for the analysis of 1,3-dihydroxy-2-methylxanthone (DHMXAN) in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanosphere and nanocapsule formulations is developed and validated. The method does not require any complex sample extraction procedure. Chromatographic separation is made with a reversed-phase C18 column, using methanol-water (90:10, v/v) containing 1% (v/v) acetic acid as a mobile phase at a flow rate of 1 mL/min. Identification is made by UV detection at 237 nm. The isocratic system operates at ambient temperature and requires 7.5 min of chromatographic time. The developed method is statistically validated according to ICH guidelines and USP 29 for its specificity, linearity, accuracy, and precision. The assay method proposed in this study is specific for DHMXAN in the presence of nanosphere and nanocapsule excipients. Diode-array analyses confirm the purity of DHMXAN peak in stress conditions (> 99.0%). The method is shown to be linear (r > or = 0.999) over the concentration range of 0.25-3.0 microg/mL. Recovery ranges from 99.0% to 102.7% (RSD: 1.49%) and from 98.3% to 101.6% (RSD: 1.07%) for nanospheres and nanocapsules, respectively. Repeatability (intra-assay precision) and intermediate precision is acceptable with RSD values ranging from 0.6% to 1.9% and from 0.3% to 2.0%, respectively. The method is shown to be suitable for the evaluation of DHMXAN content entrapped in PLGA nanoparticles.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nanopartículas , Xantonas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta
20.
Genome Biol Evol ; 10(10): 2643-2662, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060147

RESUMO

The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily had the α4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors, ultimately producing paralysis. This function is performed by mature peptides having a α3/5 cysteine spacing pattern in piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones.


Assuntos
Conotoxinas/metabolismo , Caramujo Conus/genética , Caramujo Conus/metabolismo , Animais , Evolução Biológica , Comportamento Alimentar , Família Multigênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA