RESUMO
BACKGROUND: Spinal cord stimulation (SCS) has demonstrated potential as a therapy to enhance motor functional recovery after spinal cord injury (SCI). Epidural SCS for motor recovery is traditionally performed via the dorsal electrode. While ventral epidural stimulation may provide more direct and specific stimulation of the ventral motor neurons involved in motor control, it is largely unstudied, and its role in motor recovery after SCI is unclear. In order to profile the safety and feasibility of ventral epidural spinal stimulation (VSS), the authors present a patient who underwent VSS following a corpectomy to treat SCI related to metastatic epidural cord compression. OBSERVATIONS: A patient underwent transpedicular corpectomy for spinal cord decompression, as well as the placement of 2 ventral epidural electrodes, followed by concurrent physical therapy and ventral epidural stimulation. He was nonambulatory preoperatively but was able to walk over 300 feet with the assistance of a rolling walker at the conclusion of the 3-week study period. VSS was noted to produce improvements in muscle contraction when stimulation was on. LESSONS: VSS appears to be safe, feasible, and well tolerated. VSS, as compared to standard-of-care therapy for SCI, can be used in conjunction with physical therapy and may lead to improvements in motor function. https://thejns.org/doi/10.3171/CASE24155.
RESUMO
Every year, there are approximately 500 000 peripheral nerve injury (PNI) procedures due to trauma in the US alone. Autologous and acellular nerve grafts are among current clinical repair options; however, they are limited largely by the high costs associated with donor nerve tissue harvesting and implant processing, respectively. Therefore, there is a clinical need for an off-the-shelf nerve graft that can recapitulate the native microenvironment of the nerve. In our previous work, we created a hydrogel scaffold that incorporates mechanical and biological cues that mimic the peripheral nerve microenvironment using chemically modified hyaluronic acid (HA). However, with our previous work, the degradation profile and cell adhesivity was not ideal for tissue regeneration, in particular, peripheral nerve regeneration. To improve our previous hydrogel, HA was conjugated with fibrinogen using Michael-addition to assist in cell adhesion and hydrogel degradability. The addition of the fibrinogen linker was found to contribute to faster scaffold degradation via active enzymatic breakdown, compared to HA alone. Additionally, cell count and metabolic activity was significantly higher on HA conjugated fibrinogen compared previous hydrogel formulations. This manuscript discusses the various techniques deployed to characterize our new modified HA fibrinogen chemistry physically, mechanically, and biologically. This work addresses the aforementioned concerns by incorporating controllable degradability and increased cell adhesivity while maintaining incorporation of hyaluronic acid, paving the pathway for use in a variety of applications as a multi-purpose tissue engineering platform.
Assuntos
Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrogéis/química , Ácido Hialurônico/química , Fibrinogênio/química , Animais , Ratos , Linhagem CelularRESUMO
Peripheral nerve injuries can be debilitating to motor and sensory function, with severe cases often resulting in complete limb amputation. Over the past two decades, prosthetic limb technology has rapidly advanced to provide users with crude motor control of up to 20° of freedom; however, the nerve-interfacing technology required to provide high movement selectivity has not progressed at the same rate. The work presented here focuses on the development of a magnetically aligned regenerative tissue-engineered electronic nerve interface (MARTEENI) that combines polyimide "threads" encapsulated within a magnetically aligned hydrogel scaffold. The technology exploits tissue-engineered strategies to address concerns over traditional peripheral nerve interfaces including poor axonal sampling through the nerve and rigid substrates. A magnetically templated hydrogel is used to physically support the polyimide threads while also promoting regeneration in close proximity to the electrode sites on the polyimide. This work demonstrates the utility of magnetic templating for use in tuning the mechanical properties of hydrogel scaffolds to match the stiffness of native nerve tissue while providing an aligned substrate for Schwann cell migration in vitro. MARTEENI devices were fabricated and implanted within a 5-mm-long rat sciatic-nerve transection model to assess regeneration at 6 and 12 weeks. MARTEENI devices do not disrupt tissue remodeling and show axon densities equivalent to fresh tissue controls around the polyimide substrates. Devices are observed to have attenuated foreign-body responses around the polyimide threads. It is expected that future studies with functional MARTEENI devices will be able to record and stimulate single axons with high selectivity and low stimulation regimes.