Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 256(6): 111, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352050

RESUMO

MAIN CONCLUSION: Allele-specific expressed genes (ASEGs) are widespread in maize hybrid lines and play important roles of complementation of biological pathways in heterosis. Heterosis (hybrid vigor) is an important phenomenon with both theoretical and practical value. However, our understanding of the genetic and molecular mechanisms behind heterosis is still limited. Here, we analyzed a comprehensive dataset of maize (Zea mays L.), including RNA-seq data from three hybrid-parent triplets (HPTs) and acetylated protein data from one HPT. The gene expression patterns exhibited extensive variation between the hybrids and their parents, and a substantial number of allele-specific expressed genes (ASEGs) were identified in the hybrids. Notably, ASEGs from different HPTs were significantly enriched in various conserved pathways. The parental alleles of ASEGs with fewer deleterious single-nucleotide polymorphisms were more likely to be expressed in hybrid lines than other parental alleles. ASEGs were mainly enriched in the functional gene ontology terms protein biosynthesis, photosynthesis, and metabolism. In addition, the ASEGs across the three HPTs were involved in key photosynthetic pathways and might enhance the photosynthetic efficiency of the hybrids. These findings suggest that ASEGs involved in complementary biological pathways in maize hybrids contribute to heterosis, shedding new light on the molecular mechanism of heterosis.


Assuntos
Vigor Híbrido , Zea mays , Vigor Híbrido/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Alelos
2.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682602

RESUMO

RNA-binding proteins (RBPs) form complex interactions with RNA to regulate the cell's activities including cell development and disease resistance. RNA-binding proteome (RBPome) aims to profile and characterize the RNAs and proteins that interact with each other to carry out biological functions. Generally, RNA-centric and protein-centric ribonomic approaches have been successfully developed to profile RBPome in different organisms including plants and animals. Further, more and more novel methods that were firstly devised and applied in mammalians have shown great potential to unravel RBPome in plants such as RNA-interactome capture (RIC) and orthogonal organic phase separation (OOPS). Despise the development of various robust and state-of-the-art ribonomics techniques, genome-wide RBP identifications and characterizations in plants are relatively fewer than those in other eukaryotes, indicating that ribonomics techniques have great opportunities in unraveling and characterizing the RNA-protein interactions in plant species. Here, we review all the available approaches for analyzing RBPs in living organisms. Additionally, we summarize the transcriptome-wide approaches to characterize both the coding and non-coding RBPs in plants and the promising use of RBPome for booming agriculture.


Assuntos
Eucariotos , RNA , Animais , Eucariotos/genética , Mamíferos/metabolismo , Plantas/genética , Plantas/metabolismo , Proteoma/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
3.
Plants (Basel) ; 11(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448780

RESUMO

Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.

4.
Front Plant Sci ; 13: 1003155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311109

RESUMO

In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA