Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 15(15): 2597-601, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921073

RESUMO

As high-throughput techniques including proteomics become more accessible to individual laboratories, there is an urgent need for a user-friendly bioinformatics analysis system. Here, we describe FunRich, an open access, standalone functional enrichment and network analysis tool. FunRich is designed to be used by biologists with minimal or no support from computational and database experts. Using FunRich, users can perform functional enrichment analysis on background databases that are integrated from heterogeneous genomic and proteomic resources (>1.5 million annotations). Besides default human specific FunRich database, users can download data from the UniProt database, which currently supports 20 different taxonomies against which enrichment analysis can be performed. Moreover, the users can build their own custom databases and perform the enrichment analysis irrespective of organism. In addition to proteomics datasets, the custom database allows for the tool to be used for genomics, lipidomics and metabolomics datasets. Thus, FunRich allows for complete database customization and thereby permits for the tool to be exploited as a skeleton for enrichment analysis irrespective of the data type or organism used. FunRich (http://www.funrich.org) is user-friendly and provides graphical representation (Venn, pie charts, bar graphs, column, heatmap and doughnuts) of the data with customizable font, scale and color (publication quality).


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Software , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genômica/métodos , Humanos , Internet , Metabolômica/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Interface Usuário-Computador
2.
Front Public Health ; 9: 737149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712639

RESUMO

The internet of reality or augmented reality has been considered a breakthrough and an outstanding critical mutation with an emphasis on data mining leading to dismantling of some of its assumptions among several of its stakeholders. In this work, we study the pillars of these technologies connected to web usage as the Internet of things (IoT) system's healthcare infrastructure. We used several data mining techniques to evaluate the online advertisement data set, which can be categorized as high dimensional with 1,553 attributes, and the imbalanced data set, which automatically simulates an IoT discrimination problem. The proposed methodology applies Fischer linear discrimination analysis (FLDA) and quadratic discrimination analysis (QDA) within random projection (RP) filters to compare our runtime and accuracy with support vector machine (SVM), K-nearest neighbor (KNN), and Multilayer perceptron (MLP) in IoT-based systems. Finally, the impact on number of projections was practically experimented, and the sensitivity of both FLDA and QDA with regard to precision and runtime was found to be challenging. The modeling results show not only improved accuracy, but also runtime improvements. When compared with SVM, KNN, and MLP in QDA and FLDA, runtime shortens by 20 times in our chosen data set simulated for a healthcare framework. The RP filtering in the preprocessing stage of the attribute selection, fulfilling the model's runtime, is a standpoint in the IoT industry. Index Terms: Data Mining, Random Projection, Fischer Linear Discriminant Analysis, Online Advertisement Dataset, Quadratic Discriminant Analysis, Feature Selection, Internet of Things.


Assuntos
Internet das Coisas , Mineração de Dados , Atenção à Saúde , Análise Discriminante , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA