Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 1202-1213, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785160

RESUMO

Organohalide perovskite materials and related optoelectronic applications have drawn significant attention due to their promising high-performance photon-to-electricity conversion efficiencies. Herein, we demonstrate a highly sensitive self-powered perovskite-based photodetector created with a noise-current-suppressible passivation layer of poly(methyl methacrylate) (PMMA) at the interface between a CH3NH3PbI3 light-absorbing layer and a NiOx hole-transporting layer. Along with the defect passivation effect, the PMMA layer effectively diminishes unwanted carrier recombination losses at the interface, resulting in a significant reduction of the leakage/noise current. Consequently, without external bias, a remarkably high level of specific detectivity (∼4.5 × 1013 Jones from the dark current and ∼0.81 × 1012 Jones from the noise current) can be achieved due to the use of the PMMA passivation layer, greatly exceeding those of conventional unpassivated perovskite devices. Moreover, we observed a very wide linear dynamic response range of ∼129 dB together with rapid rise and decay response times of ∼52 and ∼18 µs, respectively. Overall, these results provide a solid foundation for advanced interface-engineering to realize high-performance self-powered perovskite photodetectors for various optoelectronic applications.

2.
Opt Express ; 27(12): A693-A706, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252847

RESUMO

Polymeric light-emitting materials have been developed recently as an attractive solution-processable alternative to conventional vacuum-deposited small molecules in organic/polymeric light-emitting diodes, but they are still limited in terms of their performance, especially with low luminance and efficiency. We report on some noteworthy characteristics of a new type of single emitting layer (EML), composed of a blend of a host blue-emitting polyspirobifluorene-based copolymer and a guest yellow-emitting poly(p-phenylene vinylene) derivative copolymer. These host and guest polymers have nearly identical highest occupied molecular orbital levels of about 5.2 eV, and lowest unoccupied molecular orbital levels of about 2.4 eV and 2.9 eV, respectively, minimizing the prevailing charge-trapping properties of their blend. Even in the absence of the charge-trapping effect, it is shown that very bright green electroluminescent (EL) emission with a maximum luminance of ~142,000 cd/m2 can be realized for the blended host:guest EML at a moderate concentration (~5 wt%) of the guest polymer. Current efficiency is also observed to be up to ~14 cd/A, which is much higher than those (3.6~5.1 cd/A) of reference devices with pure host or pure guest polymeric EMLs. Moreover, there is a small change in green color emission, with CIE coordinates of (0.35, 0.60) even at high luminance, showing good color stability of the EL emission from the blended EML. These significant improvements in device performance are mainly attributed to efficient Förster resonance energy transfer between the host and guest polymers in the blended EML. Together with its simple structure and easy processability, the high brightness and efficiency of our blended polymeric EML provides a new platform for the development of solution-processable light-emitting devices and/or advanced emissive display devices.

3.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770580

RESUMO

For several years now, organic-inorganic hybrid perovskite materials have shown remarkable progress in the field of opto-electronic devices. Herein, we introduce a cathode-side passivation layer of poly(methyl methacrylate) (PMMA) for a highly efficient and stable self-powered CH3NH3PbI3 perovskite-based photodiode. For effective noise-current suppression, the PMMA passivation layer was employed between a light-absorbing layer of CH3NH3PbI3 (MAPbI3) perovskite and an electron transport layer of [6,6]-phenyl-C61-butyric acid methyl ester. Due to its passivation effect on defects in perovskite film, the PMMA passivation layer can effectively suppress interface recombination and reduce the leakage/noise current. Without external bias, the MAPbI3 photodiode with the PMMA layer demonstrated a significantly high specific detectivity value (~1.07 × 1012 Jones) compared to that of a conventional MAPbI3 photodiode without a PMMA layer. Along with the enhanced specific detectivity, a wide linear dynamic response (~127 dB) with rapid rise (~50 µs) and decay (~17 µs) response times was obtained. Furthermore, highly durable dynamic responses of the PMMA-passivated MAPbI3 photodiode were observed even after a long storage time of 500 h. The results achieved with the cathode-side PMMA-passivated perovskite photodiodes represent a new means by which to realize highly sensitive and stable self-powered photodiodes for use in developing novel opto-electronic devices.

4.
Sci Rep ; 11(1): 169, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420313

RESUMO

Hybrid organic-inorganic perovskite materials provide noteworthy compact systems that could offer ground-breaking architectures for dynamic operations and advanced engineering in high-performance energy-harvesting optoelectronic devices. Here, we demonstrate a highly effective self-powered perovskite-based photodiode with an electron-blocking hole-transport layer (NiOx). A high value of responsivity (R = 360 mA W-1) with good detectivity (D = 2.1 × 1011 Jones) and external quantum efficiency (EQE = 76.5%) is achieved due to the excellent interface quality and suppression of the dark current at zero bias voltage owing to the NiOx layer, providing outcomes one order of magnitude higher than values currently in the literature. Meanwhile, the value of R is progressively increased to 428 mA W-1 with D = 3.6 × 1011 Jones and EQE = 77% at a bias voltage of - 1.0 V. With a diode model, we also attained a high value of the built-in potential with the NiOx layer, which is a direct signature of the improvement of the charge-selecting characteristics of the NiOx layer. We also observed fast rise and decay times of approximately 0.9 and 1.8 ms, respectively, at zero bias voltage. Hence, these astonishing results based on the perovskite active layer together with the charge-selective NiOx layer provide a platform on which to realise high-performance self-powered photodiode as well as energy-harvesting devices in the field of optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA